Skip to main content

A fun, lightweight tool to visualize potential flows quickly!

Project description

PotentialFlowVisualizer (PFV)

By Peter Sharpe

A fun, lightweight tool to visualize potential flows quickly!

PFV Description

PotentialFlowVisualizer is a convenient Python library that can be used to quickly visualize various potential flow fields. If you're new to potential flows, I've written a short intro at the bottom of this document.

PFV syntax is explicitly designed to be concise and readable. Rendering of flow fields happens through Plot.ly's beautiful visualization tools. This library is designed to have minimal dependencies - it requires just NumPy and Plotly.

Installation

Install with pip: pip install potentialflowvisualizer

Examples

Here are a few examples to show you how you might use PFV to look at basic flowfields:

Freestream, Source, and Sink (Rankine Oval)

from potentialflowvisualizer import *

field = Flowfield([
    Freestream(1, 0),
    Source(10, -3, 0),
    Source(-10, 3, 0),
])

field.draw("streamfunction")

Freestream Source Sink

Lifting Cylinder Flow

from potentialflowvisualizer import *

field = Flowfield([
    Freestream(1, 0),
    Vortex(20, 0, 0),
    Doublet(-100, 0, 0, 0)
])

field.draw("streamfunction")

Lifting Cylinder Flow

Nonlifting NACA0020

Here, we use some key results of slender body theory to (approximately) model a thin streamlined body.

from potentialflowvisualizer import *

# Body Geometry definition
x = np.linspace(-5, 5, 21)
c = np.max(x) - np.min(x)
x0 = np.min(x)
y = 0.2 * c * 10 * (
        + 0.2969 * ((x - x0) / c) ** 0.5
        - 0.1260 * ((x - x0) / c)
        - 0.3516 * ((x - x0) / c) ** 2
        + 0.2843 * ((x - x0) / c) ** 3
        - 0.1036 * ((x - x0) / c) ** 4
)
dy = np.diff(y)

# Freestream properties
V = 1

# Set up the flowfield
field = Flowfield([
    Freestream(V, 0)
])

field.objects.extend( # Add line sources to model the thickness
    [LineSource(V * dy[i], x[i], 0, x[i + 1], 0) for i in range(len(x) - 1)]
)
field.draw("streamfunction") # And visualize it

Nonlifting NACA0020 Flow

Nonlifting NACA0020 at an Angle

To first order, we can model the flow around a NACA0020 section at an angle by adding doublets. (Note that the lack of net vorticity means that this is a nonlifting flow.) As we can see, slender body theory starts to break down a bit in this case.

from potentialflowvisualizer import *

# Body Geometry definition
x = np.linspace(-5, 5, 51)
c = np.max(x) - np.min(x)
x0 = np.min(x)
y = 0.2 * c * 10 * (
        + 0.2969 * ((x - x0) / c) ** 0.5
        - 0.1260 * ((x - x0) / c)
        - 0.3516 * ((x - x0) / c) ** 2
        + 0.2843 * ((x - x0) / c) ** 3
        - 0.1036 * ((x - x0) / c) ** 4
)
dy = np.diff(y)

# Freestream properties
V = 1
alpha = 10
alpha_rad = np.radians(alpha)

# Set up the flowfield
field = Flowfield([
    Freestream(V * np.cos(alpha_rad), V * np.sin(alpha_rad))
])

field.objects.extend( # Add line sources to model the thickness
    [LineSource(V * dy[i], x[i], 0, x[i + 1], 0) for i in range(len(x) - 1)]
)
field.objects.extend( # Add doublets to model crossflow
    [Doublet(2 * V * y[i] * alpha_rad, x[i], 0, np.radians(90)) for i in range(len(x))]
)

field.draw("streamfunction") # And visualize it

Nonlifting NACA0020 at angle

Potential Flow: A 30-second Crash Course

Potential flow is a model of how fluids behave under certain mathematically-convenient assumptions. Potential flows can be described by a short, elegant equation:

Here, is a scalar that represents the "velocity potential" at a given point - we use the word "potential", because it's sort of analogous to potential energy or a voltage potential. To find the fluid's velocity at a point, we look at the derivatives of the potential at that point:

There are a few "fundamental solutions" to this governing equation - a few of these are shown below. The governing equation is linear, so we can superimpose various fundamental solutions until we obtain a flowfield that describes some physically-relevant situation.

Because of this, potential flow is applicable to many common problems in aerodynamics and hydrodynamics. Furthermore, the ability to break complex flow fields into simple "fundamental solutions" allows engineers to gain an intuitive understanding of the physics at play - something that can be much more difficult with other, more complicated flow models.

License

MIT License

Copyright 2020 Peter Sharpe

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PotentialFlowVisualizer-0.2.1.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

PotentialFlowVisualizer-0.2.1-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file PotentialFlowVisualizer-0.2.1.tar.gz.

File metadata

  • Download URL: PotentialFlowVisualizer-0.2.1.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.11

File hashes

Hashes for PotentialFlowVisualizer-0.2.1.tar.gz
Algorithm Hash digest
SHA256 66e0da063ace2b2d8fd37fc23db5d81c724f10715a7e09425c822ab11e8b16ad
MD5 883e52a8c5984750c031be7cbdb89f2e
BLAKE2b-256 f6f8a2ea77ee000a34c6537b49bf99b6e63d32a00443eae516553177be60dd20

See more details on using hashes here.

File details

Details for the file PotentialFlowVisualizer-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: PotentialFlowVisualizer-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.11

File hashes

Hashes for PotentialFlowVisualizer-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9e6d4ca6b87f5a4a97f438d1dcf6820342bf539baf2d20e7e996547313fc6477
MD5 946124e2519e5862c255a5d121c3ca4c
BLAKE2b-256 60d40edf6cd312bc46f32a5e65e529ea786b38b5749e012216755841049c96a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page