Skip to main content

PowerML python package

Reason this release was yanked:

Please install most recent version

Project description

PowerML Python Package

Installation

pip install powerml_app

Configure

In order to use this library, first create a config file at ~/.powerml/configure.yaml. Here's an example:

powerml:
    key: "<POWERML-KEY>"
openai:
    key: "<OPENAI-KEY>"

You may also configure the PowerML class by passing in a dictionary with the following specified format

from powerml import PowerML
config = {"powerml": {"key": "<POWERML-KEY>"}}
powerml = PowerML(config)

PowerML Key

To get a powerml key, go to https://staging.powerml.co/ and log in with your email. Contact our team if you are unable to log in and we'll add you!

Usage

How to use:

After configuring PowerML, we can use its member functions fit and predict

from powerml import PowerML
config = {"powerml": {"key": "<POWERML-KEY>"}}
powerml = PowerML(config)

testPrompt = "hello there"
response = powerml.predict(prompt=testPrompt)
data = ["item2", "item3"]
model_details = powerml.fit(data)

You may further calibrate any model using PowerML.fit

model_details = powerml.fit(data, model="<MODEL_NAME>")

Currently the default model is openai's text-davinci-003.

Fit

fit will return a dictionary object in the following format:

{
    "model_id":"23",
    "project_id":"None",
    "user_id":"12",
    "job_id":"89",
    "model_name":"be894276039088c5f8db3f6bfaeb19953ed9ffe55f37a847a58f9fb320d307bc",
    "job_config":"{\"type\": \"prompt_tune\", \"model_name\": \"llama\"}",
    "prompt":"item2item3{{input}}",
    "creation_time":"2022-12-20 02:19:36.519260",
    "job":{
        "job_id":"89",
        "project_id":"None",
        "user_id":"12",
        "config":"{\"type\": \"prompt_tune\", \"model_name\": \"llama\"}",
        "status":"COMPLETED",
        "name":"be894276039088c5f8db3f6bfaeb19953ed9ffe55f37a847a58f9fb320d307bc",
        "metric":"None",
        "history":"None",
        "start_time":"2022-12-20 02:19:36.369450",
        "end_time":"2022-12-20 02:19:35.837668"
    }
}

Predict

In the dictionary object returned from Powerml.fit, model_name is the name of your newly fit model. The PowerML class will immediately start using this model in predictions, so all you need to do now is to call predict:

response = powerml.predict("test")

Alternatively, you may use any model of a model you've trained before

response = powerml.predict("test", model="<MODEL_NAME>")

Currently the default model is openai's text-davinci-003.

PowerML Class

The PowerML class has member functions fit and predict.

predict accepts the following arguments:

def predict(self,
            prompt: str,
            model: str = "",
            stop: str = "",
            max_tokens: int = 128,
            temperature: int = 0,
            ) -> str:

fit accepts the following arguments:

def fit(self,
        data: list[str],
        model: str = ""):

PowerMLTopicModel Class

The PowerMLTopicModel class is an example class designed to extract topics from the prompt.

Usage

def get_examples():
    examples_path = os.path.join(os.path.dirname(__file__), "examples.json")
    with open(examples_path) as examples_file:
        examples = json.load(examples_file)
    return examples

def get_topics():
    return ["vscode","web","dashboard"]

config = {"powerml": {"key": "<POWERML-KEY>"}}
model = PowerMLTopicModel(get_topics(), config)
examples = get_examples()
model.fit(examples)
topics = model.predict("Move invite teammates page to its own base route . per designs:   This PR just moves existing views around and adds a new base route (i.e. no new functionality)")
print("topics:", topics)

Methods

__init__ is defined as follows:

def __init__(self, topics: list[str], config={}):

fit is defined as follows:

def fit(self, 
        examples: list[
            {"example": str, "labels": list[str]}
        ]):

where examples is a list of dictionaries with format {"example": str, "labels": list[str]}.

predict is defined as follows:

def predict(self, prompt: str):

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

powerml_app-0.0.16.tar.gz (12.7 kB view details)

Uploaded Source

Built Distribution

powerml_app-0.0.16-py3-none-any.whl (16.5 kB view details)

Uploaded Python 3

File details

Details for the file powerml_app-0.0.16.tar.gz.

File metadata

  • Download URL: powerml_app-0.0.16.tar.gz
  • Upload date:
  • Size: 12.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for powerml_app-0.0.16.tar.gz
Algorithm Hash digest
SHA256 dc3a555555470c6c16cbf696229e6acd7bf7137024965b2e29b864a96aa883e2
MD5 26ae492b513d06306cd6d13f80537ccc
BLAKE2b-256 fbcb1ccad6c22155b0be26553067a6153620e7056faefed33d8cfceef1bd79b8

See more details on using hashes here.

File details

Details for the file powerml_app-0.0.16-py3-none-any.whl.

File metadata

  • Download URL: powerml_app-0.0.16-py3-none-any.whl
  • Upload date:
  • Size: 16.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for powerml_app-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 6cd6772feb8400846d9e4e86666ea5b2782e3134c75c1739331d3c5950850a1b
MD5 95c8b3eaba8eb98589cda4fcf68d201f
BLAKE2b-256 11a0dc9ee424862e76ab63e8d9e53e2ecb5cfec18be9dafe0389cebe3ba660b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page