Skip to main content

PowerML python package

Reason this release was yanked:

Please install most recent version

Project description

PowerML Python Package

Installation

pip install powerml_app

Authentication

You will need a PowerML key. To get a PowerML key, go to https://staging.powerml.co/ and log in with your email. Contact our team if you are unable to log in and we'll add you!

Optional: To get an OpenAI key, go to https://beta.openai.com/account/api-keys.

Configuration

You configure the PowerML class by passing in a dictionary like so:

from powerml import PowerML
config = {"powerml": {"key": "<POWERML-KEY>"}}
powerml = PowerML(config)

Optional: Create a config file at ~/.powerml/configure.yaml with your PowerML and OpenAI keys. Here's an example:

powerml:
    key: "<POWERML-KEY>"
openai:
    key: "<OPENAI-KEY>"

These are default keys for the PowerML class but will be overriden by any configuration dictionary passed into the class constructor.

Usage

You can use the member functions of the PowerML class, predict and fit, to make predictions with the model and fit data to the model to improve and customize it.

You can use predict to run any prompt off the bat:

from powerml import PowerML

powerml = PowerML()

# Run base model
myPrompt = "hello there"
response = powerml.predict(prompt=myPrompt)

To fit data to the model, you can use fit as so:

# Fit model to data
myData = ["item2", "item3"]
myModel = powerml.fit(myData)

To run this fitted model, you can use predict again, specifying the new model name:

# Use new model
myModelName = myModel["model_name"]
response = powerml.predict(prompt=myPrompt, model=myModelName)

PowerML Class

The PowerML class has member functions fit and predict.

Predict

predict accepts the following arguments:

def predict(self,
            prompt: str,
            model: str = "text-davinci-003",
            stop: str = "",
            max_tokens: int = 128,
            temperature: int = 0,
            ) -> str:

predict will return a string of the model's output.

fit accepts the following arguments:

def fit(self,
        data: list[str],
        model: str = ""):

fit will return a dictionary object in the following format:

{
    "model_id":"23",
    "project_id":"None",
    "user_id":"12",
    "job_id":"89",
    "model_name":"be894276039088c5f8db3f6bfaeb19953ed9ffe55f37a847a58f9fb320d307bc",
    "job_config":"{\"type\": \"prompt_tune\", \"model_name\": \"llama\"}",
    "prompt":"item2item3{{input}}",
    "creation_time":"2022-12-20 02:19:36.519260",
    "job":{
        "job_id":"89",
        "project_id":"None",
        "user_id":"12",
        "config":"{\"type\": \"prompt_tune\", \"model_name\": \"llama\"}",
        "status":"COMPLETED",
        "name":"be894276039088c5f8db3f6bfaeb19953ed9ffe55f37a847a58f9fb320d307bc",
        "metric":"None",
        "history":"None",
        "start_time":"2022-12-20 02:19:36.369450",
        "end_time":"2022-12-20 02:19:35.837668"
    }
}

ExtractTopicsModel Class

The ExtractTopicsModel class is an example class designed to extract topics from the prompt.

Usage

To instantiate a ExtractTopicsModel.

model = ExtractTopicsModel(topics)

To customize your ExtractTopicsModel instance, you can pass it examples and topics to fit.

# Examples in json for the model to fit to, in the format:
# [
#    { "example": "Using VS here for my IDE", labels: ["vscode"] },
#    { "example": "A dashboard on Chrome", labels: ["web", "dashboard"] },
# ]
examples = get_json_examples()

# Topics, e.g. ["vscode", "web", "dashboard"]
topics = get_list_of_topics()

model.fit(examples, topics)

Now, you can run this model on new examples with predict:

new_example = "Move invite teammates page to its own base route . per designs:   This PR just moves existing views around and adds a new base route (i.e. no new functionality)"

example_topics = model.predict(new_example)

Methods

__init__ is defined as follows:

def __init__(self, config={}, model_name=None):

fit is defined as follows:

def fit(self, 
        examples: list[
            {"example": str, "labels": list[str]}
        ],
        topics: list[str],
        ):

where examples is a list of dictionaries with format {"example": str, "labels": list[str]}.

predict is defined as follows:

def predict(self, prompt: str):

CreateTopicsModel Class

The CreateTopicsModel class is an example class designed to generate topics from a list of data. This is a batch process and may take a few minutes.

Usage

docs = get_list_of_data()
learn_topics = CreateTopicsModel()
learn_topics.fit(docs, topic_type='one-word system components')
topics = learn_topics.predict()

Usage with ExtractTopicsModel

Topics can be learned by CreateTopicsModel, then used in ExtractTopicsModel.

First, get topics from CreateTopicsModel:

docs = get_list_of_data()
learn_topics = CreateTopicsModel()
learn_topics.fit(docs, topic_type='one-word system components')
topics = learn_topics.predict()

Then, use ExtractTopicsModel as you normally would (as above) to fit it to examples, and then predict on new examples:

topic_model = ExtractTopicsModel()
labeled_data = get_formatted_examples()
topic_model.fit(labeled_data, topics)

new_example = "Move invite teammates page to its own base route . per designs:   This PR just moves existing views around and adds a new base route (i.e. no new functionality)"
new_example_topics = topic_model.predict(new_example)

Methods

__init__ is defined as follows:

def __init__(
        self,
        config={},
        num_subsamples=87,
        max_output_tokens=256,):

fit is defined as follows:

def fit(self, documents, topic_type):

where documents is a list of strings.

predict is defined as follows:

def predict(self):

and returns a set of strings.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

powerml_app-0.0.29.tar.gz (22.3 kB view details)

Uploaded Source

Built Distribution

powerml_app-0.0.29-py3-none-any.whl (33.9 kB view details)

Uploaded Python 3

File details

Details for the file powerml_app-0.0.29.tar.gz.

File metadata

  • Download URL: powerml_app-0.0.29.tar.gz
  • Upload date:
  • Size: 22.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for powerml_app-0.0.29.tar.gz
Algorithm Hash digest
SHA256 0e55cd3d6c157d990b1c77985f3f2676a3f8909c51a1993eafacdfa70db98f18
MD5 f472a3603e85500ab0298eaf81bf56ae
BLAKE2b-256 a43f321be16680c6c744755b0e51862b1ccdca4656f52ffdbc3a1a59bf89fb03

See more details on using hashes here.

File details

Details for the file powerml_app-0.0.29-py3-none-any.whl.

File metadata

File hashes

Hashes for powerml_app-0.0.29-py3-none-any.whl
Algorithm Hash digest
SHA256 fe0b4a031320a4f0b6f896e3917102f22734e37a40e2ee71da66985477beb09b
MD5 2c341609a0394356d1934dbfc027f8f5
BLAKE2b-256 ec4ee811d3150ff28f32a8ec39d9729fe8a6e44282dc17f05a481691bca86ecb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page