Skip to main content

PowerML python package

Reason this release was yanked:

Please install most recent version

Project description

PowerML Python Package

Installation

pip install powerml_app

Authentication

You will need a PowerML key. To get a PowerML key, go to https://staging.powerml.co/ and log in with your email. Contact our team if you are unable to log in and we'll add you!

Optional: To get an OpenAI key, go to https://beta.openai.com/account/api-keys.

Configuration

You configure the PowerML class by passing in a dictionary like so:

from powerml import PowerML
config = {"powerml": {"key": "<POWERML-KEY>"}}
powerml = PowerML(config)

Optional: Create a config file at ~/.powerml/configure.yaml with your PowerML and OpenAI keys. Here's an example:

powerml:
    key: "<POWERML-KEY>"
openai:
    key: "<OPENAI-KEY>"

These are default keys for the PowerML class but will be overriden by any configuration dictionary passed into the class constructor.

Usage

You can use the member functions of the PowerML class, predict and fit, to make predictions with the model and fit data to the model to improve and customize it.

You can use predict to run any prompt off the bat:

from powerml import PowerML

powerml = PowerML()

# Run base model
myPrompt = "hello there"
response = powerml.predict(prompt=myPrompt)

To fit data to the model, you can use fit as so:

# Fit model to data
myData = ["item2", "item3"]
myModel = powerml.fit(myData)

To run this fitted model, you can use predict again, specifying the new model name:

# Use new model
myModelName = myModel["model_name"]
response = powerml.predict(prompt=myPrompt, model=myModelName)

PowerML Class

The PowerML class has member functions fit and predict.

Predict

predict accepts the following arguments:

def predict(self,
            prompt: str,
            model: str = "text-davinci-003",
            stop: str = "",
            max_tokens: int = 128,
            temperature: int = 0,
            ) -> str:

predict will return a string of the model's output.

fit accepts the following arguments:

def fit(self,
        data: list[str],
        model: str = ""):

fit will return a dictionary object in the following format:

{
    "model_id":"23",
    "project_id":"None",
    "user_id":"12",
    "job_id":"89",
    "model_name":"be894276039088c5f8db3f6bfaeb19953ed9ffe55f37a847a58f9fb320d307bc",
    "job_config":"{\"type\": \"prompt_tune\", \"model_name\": \"llama\"}",
    "prompt":"item2item3{{input}}",
    "creation_time":"2022-12-20 02:19:36.519260",
    "job":{
        "job_id":"89",
        "project_id":"None",
        "user_id":"12",
        "config":"{\"type\": \"prompt_tune\", \"model_name\": \"llama\"}",
        "status":"COMPLETED",
        "name":"be894276039088c5f8db3f6bfaeb19953ed9ffe55f37a847a58f9fb320d307bc",
        "metric":"None",
        "history":"None",
        "start_time":"2022-12-20 02:19:36.369450",
        "end_time":"2022-12-20 02:19:35.837668"
    }
}

ExtractTopicsModel Class

The ExtractTopicsModel class is an example class designed to extract topics from the prompt.

Usage

To instantiate a ExtractTopicsModel.

model = ExtractTopicsModel(topics)

To customize your ExtractTopicsModel instance, you can pass it examples and topics to fit.

# Examples in json for the model to fit to, in the format:
# [
#    { "example": "Using VS here for my IDE", labels: ["vscode"] },
#    { "example": "A dashboard on Chrome", labels: ["web", "dashboard"] },
# ]
examples = get_json_examples()

# Topics, e.g. ["vscode", "web", "dashboard"]
topics = get_list_of_topics()

model.fit(examples, topics)

Now, you can run this model on new examples with predict:

new_example = "Move invite teammates page to its own base route . per designs:   This PR just moves existing views around and adds a new base route (i.e. no new functionality)"

example_topics = model.predict(new_example)

Methods

__init__ is defined as follows:

def __init__(self, config={}, model_name=None):

fit is defined as follows:

def fit(self, 
        examples: list[
            {"example": str, "labels": list[str]}
        ],
        topics: list[str],
        ):

where examples is a list of dictionaries with format {"example": str, "labels": list[str]}.

predict is defined as follows:

def predict(self, prompt: str):

CreateTopicsModel Class

The CreateTopicsModel class is an example class designed to generate topics from a list of data. This is a batch process and may take a few minutes.

Usage

docs = get_list_of_data()
learn_topics = CreateTopicsModel()
learn_topics.fit(docs, topic_type='one-word system components')
topics = learn_topics.predict()

Usage with ExtractTopicsModel

Topics can be learned by CreateTopicsModel, then used in ExtractTopicsModel.

First, get topics from CreateTopicsModel:

docs = get_list_of_data()
learn_topics = CreateTopicsModel()
learn_topics.fit(docs, topic_type='one-word system components')
topics = learn_topics.predict()

Then, use ExtractTopicsModel as you normally would (as above) to fit it to examples, and then predict on new examples:

topic_model = ExtractTopicsModel()
labeled_data = get_formatted_examples()
topic_model.fit(labeled_data, topics)

new_example = "Move invite teammates page to its own base route . per designs:   This PR just moves existing views around and adds a new base route (i.e. no new functionality)"
new_example_topics = topic_model.predict(new_example)

Methods

__init__ is defined as follows:

def __init__(
        self,
        config={},
        num_subsamples=87,
        max_output_tokens=256,):

fit is defined as follows:

def fit(self, documents, topic_type):

where documents is a list of strings.

predict is defined as follows:

def predict(self):

and returns a set of strings.

WriteEmailModel Class

The WriteEmailModel class is an example class designed to generate emails from a subject.

Usage

model = WriteEmailModel()
email = model.predict("Toys'r'Us")

ExtractMenuItemsModel Class

The ExtractMenuItemsModel class is an example class designed to generate orders from a conversation.

Usage

model = ExtractMenuItemsModel()
items = model.predict("1 Chicken Burrito")

ForecastSequenceModel Class

The ForecastSequenceModel class is an example class designed to generate a numeric sequence from a title.

Usage

model = ForecastSequenceModel()
autocompletion = model.predict("Freakonomics Radio")

AutocompleteSQLModel Class

The AutocompleteSQLModel class is an example class designed to generate sql completions from a prompt.

Usage

model = AutocompleteSQLModel()
model.fit(
    table_schemas=[
        "CREATE TABLE users ( id SERIAL PRIMARY KEY, first_name TEXT, last_name TEXT);"
    ],
    example_queries=[
        "SELECT * FROM users WHERE id=?"
    ])
autocompletion = model.predict("select * from ")

QuestionAnswerModel Class

The QuestionAnswerModel class is an example class designed to generate questions from an answer.

Usage

model = QuestionAnswerModel()
lesson = "Greek Philosophy"
answer = "Socrates"
examples = [
    "Who said 'The only true wisdom is in knowing you know nothing.'",
    "Who said 'I am the wisest man alive, for I know one thing, and that is that I know nothing.'",
]
model.fit(lesson, answer, examples)
result = model.predict()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

powerml_app-0.0.33.tar.gz (26.3 kB view details)

Uploaded Source

Built Distribution

powerml_app-0.0.33-py3-none-any.whl (39.4 kB view details)

Uploaded Python 3

File details

Details for the file powerml_app-0.0.33.tar.gz.

File metadata

  • Download URL: powerml_app-0.0.33.tar.gz
  • Upload date:
  • Size: 26.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for powerml_app-0.0.33.tar.gz
Algorithm Hash digest
SHA256 d6db8200fb2e09e198d98aa9fb7020278859ac5ab97b940706efbd806468c491
MD5 f435cfabb9ed3ff32575b8304d2b1fe8
BLAKE2b-256 bfc6bd3d2198965d972b872b42926abdb644454e9ca542f10061074add868834

See more details on using hashes here.

File details

Details for the file powerml_app-0.0.33-py3-none-any.whl.

File metadata

  • Download URL: powerml_app-0.0.33-py3-none-any.whl
  • Upload date:
  • Size: 39.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for powerml_app-0.0.33-py3-none-any.whl
Algorithm Hash digest
SHA256 47d1002bdbf2c76d00b02562841fcc85f7f046965d5c19e1abb400ae25d03d33
MD5 d3348fc384ebf26420c8002305acd29e
BLAKE2b-256 d2ceb38ee7c0ed8061c587bf0bd6f50c0377b2cd630fd79dff2df959c539d905

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page