Skip to main content

PowerML python package

Project description

PowerML Python Package

Installation

pip install powerml_app

Configure

In order to use this library, first create a config file at ~/.powerml/configure.yaml. Here's an example:

powerml:
    key: "<POWERML-KEY>"
openai:
    key: "<OPENAI-KEY>"

You may also configure the PowerML class by passing in a dictionary

from powerml import PowerML
config = {"powerml": {"key": "<POWERML-KEY>"}}
powerml = PowerML(config)

PowerML Key

To get a powerml key, go to https://staging.powerml.co/ and log in with your email. Contact our team if you are unable to log in and we'll add you!

Usage

How to use:

After configuring PowerML, we can use its member functions fit and predict

from powerml import PowerML
config = {"powerml": {"key": "<POWERML-KEY>"}}
powerml = PowerML(config)

testPrompt = "hello there"
response = powerml.predict(prompt=testPrompt)
data = ["item2", "item3"]
model_details = powerml.fit(data, model_name="llama")

Fit

fit will return a dictionary object in the following format:

{
    "model_id":"23",
    "project_id":"None",
    "user_id":"12",
    "job_id":"89",
    "model_name":"be894276039088c5f8db3f6bfaeb19953ed9ffe55f37a847a58f9fb320d307bc",
    "job_config":"{\"type\": \"prompt_tune\", \"model_name\": \"llama\"}",
    "prompt":"item2item3{{input}}",
    "creation_time":"2022-12-20 02:19:36.519260",
    "job":{
        "job_id":"89",
        "project_id":"None",
        "user_id":"12",
        "config":"{\"type\": \"prompt_tune\", \"model_name\": \"llama\"}",
        "status":"COMPLETED",
        "name":"be894276039088c5f8db3f6bfaeb19953ed9ffe55f37a847a58f9fb320d307bc",
        "metric":"None",
        "history":"None",
        "start_time":"2022-12-20 02:19:36.369450",
        "end_time":"2022-12-20 02:19:35.837668"
    }
}

Predict

model_name is the name of your newly fit model. The PowerML class will immediately start using this model in predictions, so all you need to do now is to call predict:

response = powerml.predict("test")

Alternatively, you may use any model_name of a model you've trained before

response = powerml.predict("test", model_name="<MODEL_NAME>")

PowerML Class

The PowerML class has member functions fit and predict.

predict accepts the following arguments:

def predict(self,
            prompt: str,
            model: str = "",
            stop: str = "",
            max_tokens: int = 128,
            temperature: int = 0,
            ) -> str:

fit accepts the following arguments:

def fit(self,
        data: list[str],
        model: str = "llama"):

PowerMLTopicModel Class

The PowerMLTopicModel class is an example class designed to extract topics from the prompt.

Usage

def get_examples():
    examples_path = os.path.join(os.path.dirname(__file__), "examples.json")
    with open(examples_path) as examples_file:
        examples = json.load(examples_file)
    return examples

def get_topics():
    return ["vscode","web","dashboard"]

model = PowerMLTopicModel(get_topics())
examples = get_examples()
model.fit(examples)
topics = model.predict("Move invite teammates page to its own base route . per designs:   This PR just moves existing views around and adds a new base route (i.e. no new functionality)")
print("topics:", topics)

Methods

__init__ is defined as follows:

def __init__(self, topics: list[str]):

fit is defined as follows:

def fit(self, 
        examples: list[
            {"example": str, "labels": list[str]}
        ]):

where examples is a list of dictionaries with format {"example": str, "labels": list[str]}.

predict is defined as follows:

def predict(self, prompt: str):

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

powerml_app-0.0.6.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

powerml_app-0.0.6-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file powerml_app-0.0.6.tar.gz.

File metadata

  • Download URL: powerml_app-0.0.6.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for powerml_app-0.0.6.tar.gz
Algorithm Hash digest
SHA256 4df46341cfebdf436111727ed58265a21c61d03950e30a0b3b1b409e74d91a40
MD5 6d81fbc74a770d1d937e474b35e514f1
BLAKE2b-256 1239108dfab25f47fa6ea7d703ce58efe81bfa61a3426c2263e94c42e562f130

See more details on using hashes here.

File details

Details for the file powerml_app-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: powerml_app-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for powerml_app-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 70088e404e0f5f69a3c90ae563afc97eb1ec58dc04f0dbd36848b2dffe701fab
MD5 8b2470dd1806d4887d9426ea866d65ac
BLAKE2b-256 bacec3de09a13ad95abedf9e3ddd4041f4be68736649b5f69a0c7af5558ae9ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page