Skip to main content

A Stochastic Dual Dynamic Programmimg library to solve economical dispach of power systems.

Project description

PyPI version

Python versions

Downloads

Power System Stochastic Dual Dynamic Programming

The main goal of this library is to provide support for studies regarding the optimal dispatch of power systems, majorly comprised of Thermoelectric and Hydroelectric Generators.

Note 1 This is an under development library.

A special thank should be given to professor André Marcato. This project does not intend to substitute the similar library PySDDP.

Note 1 This project is being developed alongside the masters course: Planejamento de Sistemas Elétricos, as part of the masters program in Energy Systems at the Electrical Engineering Graduate Program from the Universidade Federal de Juiz de Fora - Brazil

Note 2 The code will evolve alongside the video lectures provided by professor Marcato at: Curso de Planejamento de Sistemas Elétricos

Installation

pip install powersddp

Example

There are two ways of initializing a Power System. Either by providing a .yml file, or by passing a dictionary as an initialization data. Both are depicted bellow:

Note: When using the file input method (.yml format) check the example of how to declare the parameters.

Initializing a PowerSystem

import powersddp as psddp

system = psddp.PowerSystem(path='system.yml')

print("System Load: {}\n"
      "Number of HGUs: {}\n"
      "Number of TGUs: {}".format(system.data['load'],
                                  len(system.data['hydro_units']),
                                  len(system.data['thermal_units'])))
import powersddp as psddp

data = {'load': [50, 50, 50],
        'discretizations': 3,
        'stages': 3,
        'scenarios': 2,
        'outage_cost': 500,
        'hydro_units': [{'name': 'HU1',
                         'v_max': 100,
                         'v_min': 20,
                         'v_ini': 100,
                         'prod': 0.95,
                         'flow_max': 60,
                         'inflow_scenarios': [[23, 16], [19, 14], [15, 11]]}],
        'thermal_units': [{'name': 'GT1', 'capacity': 15, 'cost': 10},
                          {'name': 'GT2', 'capacity': 10, 'cost': 25}]}

PowerSystem = psddp.PowerSystem(data=data)

print("System Load: {}\n"
      "Number of HGUs: {}\n"
      "Number of TGUs: {}".format(PowerSystem.data['load'],
                                  len(PowerSystem.data['hydro_units']),
                                  len(PowerSystem.data['thermal_units'])))

Dispatching a PowerSystem

dispatch() accepts the following arguments:

  • solver : str, optional defaults to 'sdp'

    • Selects the solver option for the minimization objective function.
  • scenario : int, optional defaults to 0

    • Chooses either a specific scenario to investigate (scenario>1) or all scenarios to evaluate (scenario= 0). Starting from 0 to the number of declared scenarios in the hydro_units['inflow_scenarios'] parameter.
  • verbose : bool, optional defaults to False

    • Displays the PDDE solution for every stage of the execution. Use with care, solutions of complex systems with too many stages and scenarios might overflow the console.
  • plot : bool, optional, defaults to False

    • Displays a sequence of plots showing the future cost function for every stage of the execution.

The following example executes the Power System dispatch using the Unique Linear Programming method for the first scenario (id = 1) and outputs the optimization steps.

import powersddp as psddp

data = {'load': [50, 50, 50],
        'discretizations': 3,
        'stages': 3,
        'scenarios': 2,
        'outage_cost': 500,
        'hydro_units': [{'name': 'HU1',
                         'v_max': 100,
                         'v_min': 20,
                         'v_ini': 100,
                         'prod': 0.95,
                         'flow_max': 60,
                         'inflow_scenarios': [[23, 16], [19, 14], [15, 11]]}],
        'thermal_units': [{'name': 'GT1', 'capacity': 15, 'cost': 10},
                          {'name': 'GT2', 'capacity': 10, 'cost': 25}]}

PowerSystem = psddp.PowerSystem(data=data)
operation = PowerSystem.dispatch(solver='ulp', scenario=1, verbose=True)

print(operation)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

powersddp-0.0.3.tar.gz (11.4 kB view details)

Uploaded Source

Built Distribution

powersddp-0.0.3-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file powersddp-0.0.3.tar.gz.

File metadata

  • Download URL: powersddp-0.0.3.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.8.10 Linux/5.4.72-microsoft-standard-WSL2

File hashes

Hashes for powersddp-0.0.3.tar.gz
Algorithm Hash digest
SHA256 77c7923c1f1b3d829c5fe6471e3cf7d6fd0a09d2943262655e215412e51a45fb
MD5 74d68af0006010ba8f2eb809aa02df75
BLAKE2b-256 c35d1b69b258c5aa51320fa351428f7c3e894b0a9ca828a0159473003fa48f6f

See more details on using hashes here.

File details

Details for the file powersddp-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: powersddp-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.8.10 Linux/5.4.72-microsoft-standard-WSL2

File hashes

Hashes for powersddp-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 a5f8e208c6cf04a598008ded1484a17c9ca4b79d6d307e3c4a06758e7e9d707c
MD5 0d18deb034837b12be6ea07f80e8e9a5
BLAKE2b-256 6a13e5ddccd889b37f4e2c883d57e8999ea2aa3e0bd3e8495c93758bc1dc6085

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page