Skip to main content

Feature selection using statistical significance of shap values

Project description

PowerShap logo

PyPI Latest Release support-version codecov Downloads PRs Welcome Testing DOI

powershap is a feature selection method that uses statistical hypothesis testing and power calculations on Shapley values, enabling fast and intuitive wrapper-based feature selection.

Installation ⚙️

pip pip install powershap

Usage 🛠

powershap is built to be intuitive, it supports various models including linear, tree-based, and even deep learning models for classification and regression tasks.

from powershap import PowerShap
from catboost import CatBoostClassifier

X, y = ...  # your classification dataset

selector = PowerShap(
    model=CatBoostClassifier(n_estimators=250, verbose=0, use_best_model=True)
)

selector.fit(X, y)  # Fit the PowerShap feature selector
selector.transform(X)  # Reduce the dataset to the selected features

Features ✨

  • default automatic mode
  • scikit-learn compatible
  • supports various models
  • insights into the feature selection method: call the ._processed_shaps_df on a fitted PowerSHAP feature selector.
  • tested code!

Benchmarks ⏱

Check out our benchmark results here.

How does it work ⁉️

Powershap is built on the core assumption that an informative feature will have a larger impact on the prediction compared to a known random feature.

  • Powershap trains multiple models with different random seeds on different subsets of the data. Each iteration it adds a random uniform feature to the dataset for training.
  • In a single iteration after training a model, powershap calculates the absolute Shapley values of all features, including the random feature. If there are multiple outputs or multiple classes, powershap uses the maximum across these multiple outputs. These values are then averaged for each feature, symbolising the impact of the feature in this iteration.
  • After performing all iterations, each feature then has an array of impacts. The impact array of each feature is then compared to the average of the random feature impact array using the percentile formula to provide a p-value. This tests whether the feature has a larger impact than the random feature and outputs a low p-value if true.
  • Powershap then outputs all features with a p-value below the provided threshold. The threshold is by default 0.01.

Automatic mode 🤖

The required number of iterations and the threshold values are hyperparameters of powershap. However, to avoid manually optimizing the hyperparameters powershap by default uses an automatic mode that automatically determines these hyperparameters.

  • The automatic mode first starts with executing powershap using ten iterations.
  • Then, for each feature powershap calculates the effect size and the statistical power of the test using a student-t power test.
  • Using the calculated effect size, powershap then calculates the required iterations to achieve a predefined power requirement. By default this is 0.99, which represents a false positive probability of 0.01.
  • If the required iterations are larger than the already performed iterations, powershap then further executes for the extra required iterations.
  • Afterward, powershap re-calculates the required iterations and it keeps re-executing until the required iterations are met.

Referencing our package :memo:

If you use powershap in a scientific publication, we would highly appreciate citing us as:

@InProceedings{10.1007/978-3-031-26387-3_5,
author="Verhaeghe, Jarne
and Van Der Donckt, Jeroen
and Ongenae, Femke
and Van Hoecke, Sofie",
title="Powershap: A Power-Full Shapley Feature Selection Method",
booktitle="Machine Learning and Knowledge Discovery in Databases",
year="2023",
publisher="Springer International Publishing",
address="Cham",
pages="71--87",
isbn="978-3-031-26387-3"
}

Paper was presented at ECML PKDD 2022. The manuscript can be found here and on the github.


👤 Jarne Verhaeghe, Jeroen Van Der Donckt

License

This package is available under the MIT license. More information can be found here: https://github.com/predict-idlab/powershap/blob/main/LICENSE

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

powershap-0.0.11.tar.gz (15.8 kB view details)

Uploaded Source

Built Distribution

powershap-0.0.11-py3-none-any.whl (15.9 kB view details)

Uploaded Python 3

File details

Details for the file powershap-0.0.11.tar.gz.

File metadata

  • Download URL: powershap-0.0.11.tar.gz
  • Upload date:
  • Size: 15.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.9 Linux/5.4.0-67-generic

File hashes

Hashes for powershap-0.0.11.tar.gz
Algorithm Hash digest
SHA256 56d7c68476a044506c9cebd208afffc1729199007397c3789396e10f51f8edeb
MD5 32fa9c3fc86ecda6e490cbea0b83ba18
BLAKE2b-256 81551af214ae3dd45b5f26468c8940e4e0f41bed20a5c4e52287162c374f8a9a

See more details on using hashes here.

File details

Details for the file powershap-0.0.11-py3-none-any.whl.

File metadata

  • Download URL: powershap-0.0.11-py3-none-any.whl
  • Upload date:
  • Size: 15.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.9 Linux/5.4.0-67-generic

File hashes

Hashes for powershap-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 9766c70f6b4fa82197764892eeb9c8083578d6e58f71a778eef7558288d39b73
MD5 dbe51079c222724a490164ece9793ae8
BLAKE2b-256 b2c5cec3a52dd259e11579c464bfd900f177d0c540abfe323d77824e8348bd72

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page