Audio Classification toolkit on PaddlePaddle
Project description
前言
本章我们来介绍如何使用PaddlePaddle训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了。
欢迎大家扫码入QQ群讨论,或者直接搜索QQ群号1169600237
,问题答案为博主Github的IDyeyupiaoling
。
使用准备
- Anaconda 3
- Python 3.8
- PaddlePaddle 2.3.2
- Windows 10 or Ubuntu 18.04
安装环境
- 首先安装的是PaddlePaddle的GPU版本,如果已经安装过了,请跳过。
conda install paddlepaddle-gpu==2.3.2 cudatoolkit=10.2 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/
- 安装PPASR库。
使用pip安装,命令如下:
python -m pip install ppacls -U -i https://pypi.tuna.tsinghua.edu.cn/simple
建议源码安装,源码安装能保证使用最新代码。
git clone https://github.com/yeyupiaoling/AudioClassification_PaddlePaddle.git
cd AudioClassification_PaddlePaddle
python setup.py install
数据数据
生成数据列表,用于下一步的读取需要,audio_path
为音频文件路径,用户需要提前把音频数据集存放在dataset/audio
目录下,每个文件夹存放一个类别的音频数据,每条音频数据长度在3秒以上,如 dataset/audio/鸟叫声/······
。audio
是数据列表存放的位置,生成的数据类别的格式为 音频路径\t音频对应的类别标签
,音频路径和标签用制表符 \t
分开。读者也可以根据自己存放数据的方式修改以下函数。
Urbansound8K 是目前应用较为广泛的用于自动城市环境声分类研究的公共数据集,包含10个分类:空调声、汽车鸣笛声、儿童玩耍声、狗叫声、钻孔声、引擎空转声、枪声、手提钻、警笛声和街道音乐声。数据集下载地址:https://zenodo.org/record/1203745/files/UrbanSound8K.tar.gz。以下是针对Urbansound8K生成数据列表的函数。如果读者想使用该数据集,请下载并解压到 dataset
目录下,把生成数据列表代码改为以下代码。
执行create_data.py
即可生成数据列表,里面提供了两种生成列表方式,第一种是自定义的数据,第二种是生成Urbansound8K的数据列表,具体看代码。
python create_data.py
生成的列表是长这样的,前面是音频的路径,后面是该音频对应的标签,从0开始,路径和标签之间用Tab隔开。
dataset/UrbanSound8K/audio/fold2/104817-4-0-2.wav 4
dataset/UrbanSound8K/audio/fold9/105029-7-2-5.wav 7
dataset/UrbanSound8K/audio/fold3/107228-5-0-0.wav 5
dataset/UrbanSound8K/audio/fold4/109711-3-2-4.wav 3
训练
接着就可以开始训练模型了,创建 train.py
。配置文件里面的参数一般不需要修改,但是这几个是需要根据自己实际的数据集进行调整的,首先最重要的就是分类大小dataset_conf.num_class
,这个每个数据集的分类大小可能不一样,根据自己的实际情况设定。然后是dataset_conf.batch_size
,如果是显存不够的话,可以减小这个参数。
# 单卡训练
CUDA_VISIBLE_DEVICES=0 python train.py
# 多卡训练
python -m paddle.distributed.launch --gpus '0,1' train.py
每轮训练结束之后都会执行一次评估,和保存模型。评估会出来输出准确率,还保存了混合矩阵图片,如下。
预测
在训练结束之后,我们得到了一个模型参数文件,我们使用这个模型预测音频。
python infer.py --audio_path=dataset/UrbanSound8K/audio/fold5/156634-5-2-5.wav
其他功能
- 为了方便读取录制数据和制作数据集,这里提供了录音程序
record_audio.py
,这个用于录制音频,录制的音频采样率为16000,单通道,16bit。
python record_audio.py
infer_record.py
这个程序是用来不断进行录音识别,我们可以大致理解为这个程序在实时录音识别。通过这个应该我们可以做一些比较有趣的事情,比如把麦克风放在小鸟经常来的地方,通过实时录音识别,一旦识别到有鸟叫的声音,如果你的数据集足够强大,有每种鸟叫的声音数据集,这样你还能准确识别是那种鸟叫。如果识别到目标鸟类,就启动程序,例如拍照等等。
python infer_record.py --record_seconds=3
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file ppacls-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: ppacls-0.0.2-py3-none-any.whl
- Upload date:
- Size: 43.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7eb5a401aba952dc2309fd429fd4af1390df4bc40c28d37233351641fe4a2b8b |
|
MD5 | f6add8820ed46cc1278f8709ad7fee6c |
|
BLAKE2b-256 | 07e54b5c97f92b120dd70420331a738068b05f76d6d32c90c656f4f3d2ee6048 |