Skip to main content

Automatic speech recognition toolkit on PaddlePaddle

Project description

python version GitHub forks GitHub Repo stars GitHub 支持系统

PPASR流式与非流式语音识别项目

本项目将分三个阶段分支,分别是入门级进阶级最终级 分支,当前为最终级的V2版本,如果想使用最终级的V1版本,请在这个分支r1.x。PPASR中文名称PaddlePaddle中文语音识别(PaddlePaddle Automatic Speech Recognition),是一款基于PaddlePaddle实现的语音识别框架,PPASR致力于简单,实用的语音识别项目。可部署在服务器,Nvidia Jetson设备,未来还计划支持Android等移动设备。别忘了star

欢迎大家扫码入知识星球或者QQ群讨论,知识星球里面提供项目的模型文件和博主其他相关项目的模型文件,也包括其他一些资源。

知识星球 QQ群

在线使用

1. 在AI Studio平台训练预测

2. 在线使用Dome

3. inscode


本项目使用的环境:

  • Anaconda 3
  • Python 3.8
  • PaddlePaddle 2.5.1
  • Windows 10 or Ubuntu 18.04

项目快速了解

  1. 本项目支持流式识别模型deepspeech2conformersqueezeformerefficient_conformer,每个模型都支持流式识别和非流式识别,在配置文件中streaming参数设置。
  2. 本项目支持两种解码器,分别是集束搜索解码器ctc_beam_search和贪心解码器ctc_greedy,集束搜索解码器ctc_beam_search准确率更高。
  3. 下面提供了一系列预训练模型的下载,下载预训练模型之后,需要把全部文件复制到项目根目录,并执行导出模型才可以使用语音识别。

更新记录

  • 2023.01.28: 调整配置文件结构,支持efficient_conformer模型。
  • 2022.12.05: 支持自动混合精度训练和导出量化模型。
  • 2022.11.26: 支持Squeezeformer模型。
  • 2022.11.01: 修改Conformer模型的解码器为BiTransformerDecoder,增加SpecSubAugmentor数据增强器。
  • 2022.10.29: 正式发布最终级的V2版本。

视频讲解

快速使用

这里介绍如何使用PPASR快速进行语音识别,前提是要安装PPASR,文档请看快速安装。执行过程不需要手动下载模型,全部自动完成。

  1. 短语音识别
from ppasr.predict import PPASRPredictor

predictor = PPASRPredictor(model_tag='conformer_streaming_fbank_wenetspeech')

wav_path = 'dataset/test.wav'
result = predictor.predict(audio_data=wav_path, use_pun=False)
score, text = result['score'], result['text']
print(f"识别结果: {text}, 得分: {int(score)}")
  1. 长语音识别
from ppasr.predict import PPASRPredictor

predictor = PPASRPredictor(model_tag='conformer_streaming_fbank_wenetspeech')

wav_path = 'dataset/test_long.wav'
result = predictor.predict_long(audio_data=wav_path, use_pun=False)
score, text = result['score'], result['text']
print(f"识别结果: {text}, 得分: {score}")
  1. 模拟流式识别
import time
import wave

from ppasr.predict import PPASRPredictor

predictor = PPASRPredictor(model_tag='conformer_streaming_fbank_wenetspeech')

# 识别间隔时间
interval_time = 0.5
CHUNK = int(16000 * interval_time)
# 读取数据
wav_path = 'dataset/test.wav'
wf = wave.open(wav_path, 'rb')
data = wf.readframes(CHUNK)
# 播放
while data != b'':
    start = time.time()
    d = wf.readframes(CHUNK)
    result = predictor.predict_stream(audio_data=data, use_pun=False, is_end=d == b'')
    data = d
    if result is None: continue
    score, text = result['score'], result['text']
    print(f"【实时结果】:消耗时间:{int((time.time() - start) * 1000)}ms, 识别结果: {text}, 得分: {int(score)}")
# 重置流式识别
predictor.reset_stream()

模型下载

  1. WenetSpeech (10000小时) 的预训练模型列表:
使用模型 是否为流式 预处理方式 语言 测试集字错率 下载地址
conformer True fbank 普通话 0.03579(aishell_test)
0.11081(test_net)
0.16031(test_meeting)
加入知识星球获取
deepspeech2 True fbank 普通话 0.05379(aishell_test) 加入知识星球获取
  1. WenetSpeech (10000小时)+中文语音数据集 (3000+小时) 的预训练模型列表:
使用模型 是否为流式 预处理方式 语言 测试集字错率 下载地址
conformere True fbank 普通话 0.02923(aishell_test)
0.11876(test_net)
0.18346(test_meeting)
加入知识星球获取
  1. AIShell (179小时) 的预训练模型列表:
使用模型 是否为流式 预处理方式 语言 测试集字错率 下载地址
squeezeformer True fbank 普通话 0.04675 加入知识星球获取
conformer True fbank 普通话 0.04178 加入知识星球获取
efficient_conformer True fbank 普通话 0.04143 加入知识星球获取
deepspeech2 True fbank 普通话 0.09732 加入知识星球获取
  1. Librispeech (960小时) 的预训练模型列表:
使用模型 是否为流式 预处理方式 语言 测试集词错率 下载地址
squeezeformer True fbank 英文 0.13033 加入知识星球获取
conformer True fbank 英文 0.08109 加入知识星球获取
efficient_conformer True fbank 英文 加入知识星球获取
deepspeech2 True fbank 英文 0.15294 加入知识星球获取

说明:

  1. 这里字错率或者词错率是使用eval.py程序并使用集束搜索解码ctc_beam_search方法计算得到的。
  2. 没有提供预测模型,需要把全部文件复制到项目的根目录下,执行export_model.py导出预测模型。
  3. 由于算力不足,这里只提供了流式模型,但全部模型都支持流式和非流式的,在配置文件中streaming参数设置。

有问题欢迎提 issue 交流

文档教程

相关项目

特别感谢

打赏作者


打赏一块钱支持一下作者

打赏作者

参考资料

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ppasr-2.4.8-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file ppasr-2.4.8-py3-none-any.whl.

File metadata

  • Download URL: ppasr-2.4.8-py3-none-any.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for ppasr-2.4.8-py3-none-any.whl
Algorithm Hash digest
SHA256 f93c206478bd3005e4cd1a867d0aaae5fc4f1d4fe3ae4918b9f4851108fb0ef7
MD5 6f559e43736605eb59b4732f87198677
BLAKE2b-256 d1726ed8a194643eccf6ccb96a7ed7191efd0c1ddc698ad102d193721250e863

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page