Skip to main content

distributed and parallel python

Project description

About Ppft

ppft is a fork of Parallel Python, and is developed as part of pathos:

Parallel Python module (pp) provides an easy and efficient way to create parallel-enabled applications for SMP computers and clusters. pp module features cross-platform portability and dynamic load balancing. Thus application written with pp will parallelize efficiently even on heterogeneous and multi-platform clusters (including clusters running other application with variable CPU loads). Visit for further information.

ppft is part of pathos, a python framework for heterogeneous computing. ppft is in active development, so any user feedback, bug reports, comments, or suggestions are highly appreciated. A list of issues is located at, with a legacy list maintained at

NOTE: ppft installs as pp. If pp is installed, it should be uninstalled before ppft is installed – otherwise, import pp will likely not find the ppft fork.

Major Changes:

  • pip and setuptools support

  • support for python 3

  • enhanced serialization, using dill.source

Current Release

This documentation is for version ppft- (a fork of pp-1.6.6).

The latest released version of ppft is available from:

pp and ppft are distributed under a BSD-like license.

Development Version

You can get the latest development version with all the shiny new features at:

If you have a new contribution, please submit a pull request.


ppft is packaged to install from source, so you must download the tarball, unzip, and run the installer:

$ tar -xvzf ppft-
$ cd ppft-
$ python build
$ python install

You will be warned of any missing dependencies and/or settings after you run the “build” step above.

Alternately, ppft can be installed with pip or easy_install:

$ pip install ppft

NOTE: ppft installs as pp. If pp is installed, it should be uninstalled before ppft is installed – otherwise, import pp will likely not find the ppft fork.


ppft requires:

- ``python``, **version == 2.7** or **version >= 3.6**, or ``pypy``
- ``six``, **version >= 1.7.3**

Optional requirements:

- ``setuptools``, **version >= 0.6**
- ``dill``, **version >= 0.3.4**

More Information

Probably the best way to get started is to look at the set of example scripts in ppft.examples. You can run the test suite with python -m ppft.tests. ppft will create and execute jobs on local workers (automatically created using python -u -m ppft). Additionally, remote servers can be created with ppserver (or python -m ppft.server), and then jobs can be distributed to remote workers. See --help for more details on how to configure a server. Please feel free to submit a ticket on github, or ask a question on stackoverflow (@Mike McKerns). If you would like to share how you use ppft in your work, please send an email (to mmckerns at uqfoundation dot org).


If you use ppft to do research that leads to publication, we ask that you acknowledge use of ppft by citing the following in your publication:

M.M. McKerns, L. Strand, T. Sullivan, A. Fang, M.A.G. Aivazis,
"Building a framework for predictive science", Proceedings of
the 10th Python in Science Conference, 2011;

Michael McKerns and Michael Aivazis,
"pathos: a framework for heterogeneous computing", 2010- ;

Please see or for further information.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution (108.0 kB view hashes)

Uploaded source

Built Distributions

ppft- (65.1 kB view hashes)

Uploaded py3

ppft- (65.1 kB view hashes)

Uploaded py2

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page