Skip to main content

PPINOT for Python (ppinot4py)

Project description

What is PPINot4Py?

PPINot4Py is a Python implementation of PPINot, used to compute process performance indicators (PPIs) for event logs.

A quick example

In the following example, we use the Road Traffic Fine event log to show how ppinot4py can be used to compute some PPIs. There is also a video with an extended version of this short example. The log is in XES format, so we use pm4py to load it into a dataframe:

import ppinot4py
from ppinot4py import model
import pandas as pd
import pm4py
from pm4py.objects.conversion.log import converter as log_converter

# Loads the event log
log = pm4py.read_xes('Road_Traffic_Fine_Management_Process.xes')

# Transforms the event log into a pandas dataframe
df = log_converter.apply(log, variant=log_converter.Variants.TO_DATA_FRAME)

# Converts the timestamp column into a timestamp
df['time:timestamp'] = pd.to_datetime(df['time:timestamp'], utc=True)

# Computes the time between activity Create Fine and activity Send Fine
tm = model.TimeMeasure('`concept:name` == "Create Fine"', '`concept:name` == "Send Fine"')
result = ppinot4py.measure_computer(tm, df)

The value of result is:

id
A1       134 days 01:00:00
A100     132 days 01:00:00
A10000   129 days 23:00:00
A10001   119 days 23:00:00
A10004   118 days 23:00:00
                ...       
V9995     48 days 00:00:00
V9996     48 days 00:00:00
V9997     48 days 00:00:00
V9998     48 days 00:00:00
V9999     48 days 00:00:00
Name: t, Length: 150370, dtype: timedelta64[ns]

We can also execute more complex metrics. For instance, we can get the percentage of cases in which the time between Create Fine and Send Fine is less than 90 days yearly grouped as follows:

create_to_send_fine_90_days= model.DerivedMeasure("create_to_send_fine < days90", 
                                {"create_to_send_fine": tm, "days90": pd.Timedelta(days=90)})
avg_create_to_send_fine_90_days = model.AggregatedMeasure(create_to_send_fine_90_days, 'avg')
ppinot4py.measure_computer(avg_create_to_send_fine_90_days, df, time_grouper=pd.Grouper(freq='1Y'))

The result is:

	          data
case_end	
2000-12-31 00:00:00+00:00	0.370000
2001-12-31 00:00:00+00:00	0.488830
2002-12-31 00:00:00+00:00	0.781479
2003-12-31 00:00:00+00:00	0.567777
2004-12-31 00:00:00+00:00	0.401980
2005-12-31 00:00:00+00:00	0.016107
2006-12-31 00:00:00+00:00	0.087001
2007-12-31 00:00:00+00:00	0.062628
2008-12-31 00:00:00+00:00	0.254578
2009-12-31 00:00:00+00:00	0.178580
2010-12-31 00:00:00+00:00	0.367412
2011-12-31 00:00:00+00:00	0.356082
2012-12-31 00:00:00+00:00	0.460812
2013-12-31 00:00:00+00:00	0.829418

This is just a small example of what can be done with ppinot4py. Next, you can find the details on how to use it.

Conditions

Measures need conditions to specify when to count or when to start or stop measuring time. In ppinot4py, you can specify these conditions in 2 different ways.

1. Time Instant Condition:

countStateCount = DataObjectState("`concept:name` == 'Close'")
countConditionCount = TimeInstantCondition(countStateCount)
countMeasureCount = CountMeasure(countConditionCount)

or simply

countMeasureExample = CountMeasure('`concept:name` == "Close"')

A TimeInstantCondition is True when the conditions changes in the event log from (!condition) -> (condition), so if our condition is "concept:name==A", and we have this secuence: A B A A A, the result will be True, False, True, False False.

The expression language that can be used to specify the condition is the same that can be used in pandas DataFrame.query().

It is also possible to specify TimeInstantConditions that refers to the beginning or the end of the case:

beginCaseCondition = TimeInstantCondition(Runtime.START, AppliesTo.PROCESS)
endCaseCondition = TimeInstantCondition(Runtime.END, AppliesTo.PROCESS)

or that refers to the beginning, end, or any other lifecycle state recorded in the log of an activity:

beginActivityCreateFine = TimeInstantCondition(Runtime.START, AppliesTo.ACTIVITY, "Create Fine")
endActivityCreateFine = TimeInstantCondition(Runtime.END, AppliesTo.ACTIVITY, "Create Fine")

2. Series Condition It is also possible to directly give the program a pandas Series with the calculated Boolean values.

Measure computer

The measure computer function receives parameters, 3 of them are optional:

def measure_computer(measure, dataframe, 
                    log_configuration = LogConfiguration(
                      id_case = 'case:concept:name', 
                      time_column = 'time:timestamp',
                      transition_column = 'lifecycle:transition',
                      activity_column = 'concept:name'
                    ),
                    time_grouper = None):

LogConfiguration is a specification of the names of four attributes of the log that identify the case id (id_case), the time of the event (time_column), the name of the activity (activity_column) and the lifecycle transitions of the activity (transition_column). By default, all of these attributes will have the standard names as specified by the XES standard. In case the user have custom names for these columns, they must be indicated.

Time grouper is a pandas Grouper object that indicates how to group the results of an aggregated measure based on the time each case finishes.

Measures

Count Measure

A count measure is used to count how many times a condition occurs in each case of the event log. It is composed of an unique attribute when that can be a string or a TimeInstantCondition and refers to the condition we want to evaluate.

class CountMeasure():
    def __init__(self, when):
        self.when = when

Example: For a certain event log and the following condition:

countState = DataObjectState('concept:name == "In Progress"')
countCondition = TimeInstantCondition(countState)
countMeasure = CountMeasure(countCondition)

measure_computer(countMeasure, dataframe)

We obtain:

case_concept_name
1-364285768     7.0
1-467153946    16.0
1-503573772     7.0
1-504538555     8.0
1-506071646    28.0
               ...
1-740865953     2.0
1-740865969     2.0
1-740866691     1.0
1-740866708     1.0
1-740866821     0.0
Length: 7554, dtype: float64

Data measure

A data measure obtains values from the attributes of the event log and it is composed of 3 values:

  • data_content_selection: The attribute you want to select.
  • precondition: Condition you want to apply to the dataset, can be TimeInstantCondition, pandas Series or string.
  • first: Boolean value, if is true, it will take the first filtered value of each case. If it is false, it will take the last value.
class DataMeasure():
    
    def __init__(self, data_content_selection, precondition, first):
       
        self.data_content_selection = data_content_selection
        self.precondition = precondition
        self.first = first

Example: For a certain event log and the following condition:

countState = DataObjectState("org:group == 'V5 3rd'")
precondition = TimeInstantCondition(countState)
dataMeasure = DataMeasure("lifecycle:transition", precondition, True)

measure_computer(dataMeasure, dataframe)

We obtain the value of lifecycle:transition for those cases where the precondition is met:

case_concept_name
1-364285768    Awaiting Assignment
1-692918254            In Progress
Name: lifecycle:transition, dtype: object

Time measure

A time measure measure the time between two time instants. It is composed of the following attributes:

  • from_condition: The starter condition where we want to count we will refer to it as 'A', it can be a TimeInstantCondition, a pandas Series or a string
  • to_condition: The final condition, we will refer to ir as 'B' it can be a TimeInstantCondition, a pandas Series or a string
  • time_measure_type: Linear or Cyclic. By default, it is Linear
    • Linear: Counts the time elapsed between the first A and the last B
    • Cyclic: Counts the time elapsed between all pairs of A and B
  • single_instance_agg_function: Type of aggregation we want to apply to our data, it only applies to cyclic measures. The default value is SUM. There are 5 types of operations:
    • SUM: The sum of all A to B pairs
    • MIN: Minimum time value between the A to B pairs
    • MAX: Maximum time value between the A to B pairs
    • AVG: The average time between all A to B pairs
    • GROUPBY: Raw grouped dataframe with no operation applied
  • first_to: Only applies to linear measures and it indicates if we want to take the first occurrence of 'B' condition or the last. By default it is False.
  • precondition: Condition applied before the calculation of A and B.
  • business_duration: If provided, the time measure will take the business hours and holidays specified in this parameter.
class TimeMeasure():

    def __init__(self, from_condition, to_condition, 
                    time_measure_type = 'Linear', single_instance_agg_function = 'SUM', 
                    first_to = 'False', 
                    precondition = None,
                    business_duration = None):
  
        self.from_condition = from_condition
        self.to_condition = to_condition
        self.time_measure_type = time_measure_type
        self.single_instance_agg_function = single_instance_agg_function
        self.precondition = precondition
        self.first_to = first_to
        self.business_duration = business_duration

In this Linear example, we want to calculate how much time has passed between 'In progress' and the last 'Closed':

condition_A = TimeInstantCondition('`lifecycle:transition` == "In Progress"')
condition_B = TimeInstantCondition('`lifecycle:transition` == "Closed"')

time_measure_linear = TimeMeasure(condition_A, condition_B)

measure_computer(time_measure_linear, dataframe)
case_concept_name
1-364285768   771 days 08:26:33 
1-467153946   477 days 13:10:03
1-512795200   401 days 08:29:23
1-537219938   318 days 12:45:49
1-543979253   292 days 14:10:21
                     ...
1-740861371     2 days 18:28:50
1-740862061     0 days 01:45:07
1-740862080     9 days 23:18:50
1-740865953     3 days 02:17:03
1-740865969     3 days 02:13:18
Name: data, Length: 4904, dtype: timedelta64[ns]

In this cyclic example, we want to calculate the average time of all pairs 'In Progress' - 'Awaiting Assignment' along all cases:

condition_A = TimeInstantCondition('`lifecycle:transition` == "In Progress"')
condition_C = TimeInstantCondition('`lifecycle:transition` == "Awaiting Assignment"')

time_measure_cyclic = TimeMeasure(condition_A, condition_C, 'CYCLIC', 'AVG')

measure_computer(time_measure_cyclic, dataframe)
case_concept_name
1-364285768    0 days 00:12:02.250000
1-467153946   38 days 21:55:53.666667
1-503573772           3 days 21:29:36
1-504538555           1 days 01:46:43
1-506071646    6 days 06:51:22.583333
                        ...
1-740859781    0 days 03:17:48.333333
1-740862061           0 days 00:05:59
1-740862080           0 days 00:03:42
1-740865953           0 days 00:02:16
1-740865969           0 days 00:01:23
Name: data, Length: 3669, dtype: timedelta64[ns]

The business duration to compute time considering only business hours is specified using class BusinessDuration as follows:

business = BusinessDuration(
    business_start = time(7,0,0),
    business_end = time(17,0,0),
    weekend_list = [5,6],
    holiday_list = pyholidays.ES(prov ='AN'),
    unit_hour = 'sec'
)

Where business_start and business_end are the times for the beginning and the end of the working day, weekend_list is the specification of the days that include the weekend (from 0 to 6), holiday_list is a list of the holidays (package pyholidays can be used for that), and unit_hour is the time unit in which the measure will be computed. The valid values are: day, hour, min, and sec.

Aggregated measure

An aggregated measure aggregates the results obtained from any of the three previous base measures. It is composed of the following attributes:

  • base_measure: Can be any kind of the previous measures (Time, Count or Data)
  • single_instance_agg_function: Operation we want to apply to data of each Time aggrupation
    • SUM: Sum of all values
    • MIN: Minimum value
    • MAX: Maximum value
    • AVG: Average of all values
    • GROUPBY: Raw grouped dataframe with no operation applied
  • data_grouper: List of measures to group by the base measure.
  • filter_to_apply: Filter to apply to the base_measure. It is a base measure that returns a boolean value
class AggregatedMeasure():

    def __init__(self, base_measure, single_instance_agg_function, data_grouper, filter_to_apply):
  
        self.base_measure = base_measure
        self.filter_to_apply = filter_to_apply
        self.single_instance_agg_function = single_instance_agg_function
        self.data_grouper = data_grouper

The following example computes a linear time measure between 'In Progress' and 'Closed' and aggregates the values grouping by each 60 seconds:

import pandas as pd

condition_A = TimeInstantCondition('lifecycle:transition == "In Progress"')
condition_B = TimeInstantCondition('lifecycle:transition == "Closed"')

time_measure = TimeMeasure(condition_A, condition_B)
aggregated_measure = AggregatedMeasure(time_measure, 'SUM')

time_grouper_60s = pd.Grouper(freq='60s')

measure_computer(aggregated_measure, dataframe, time_grouper=time_grouper_60s)
time_to_calculate
2012-05-01 05:58:00+00:00     18 days 05:59:56
2012-05-01 05:59:00+00:00      0 days 00:00:00
2012-05-01 06:00:00+00:00      0 days 00:00:00
2012-05-01 06:01:00+00:00      0 days 00:00:00
2012-05-01 06:02:00+00:00      0 days 00:00:00
                                   ...
2012-05-22 23:18:00+00:00      0 days 00:00:00
2012-05-22 23:19:00+00:00    213 days 05:00:36
2012-05-22 23:20:00+00:00    947 days 00:30:03
2012-05-22 23:21:00+00:00    437 days 23:18:16
2012-05-22 23:22:00+00:00   1233 days 22:43:00
Freq: 60S, Name: data_seconds, Length: 31285, dtype: timedelta64[ns]

We can also group them, for example, in intervals of 2 weeks:

aggregated_measure = AggregatedMeasure(time_measure, 'SUM')
measure_computer(aggregated_measure, dataframe, time_grouper=pd.Grouper(freq='2W'))
time_to_calculate
2012-05-06 00:00:00+00:00    6554 days 17:33:54
2012-05-20 00:00:00+00:00   53639 days 01:32:15
2012-06-03 00:00:00+00:00    6794 days 05:15:30
Freq: 2W-SUN, Name: data_seconds, dtype: timedelta64[ns]

Derived measure

A derived measure computes a measure by applying arithmetical or boolean functions to several other measures. It is composed of 2 attributes:

  • function_expression: Function that we want to apply to some measures. Can be arithmetical or boolean
    • Example: (A + B) / C where A,B and C are the result of previous metrics
  • measure_map: A dictionary where the key values are the name we want to assign to that measure, and the values are the measure definitions.
class DerivedMeasure():
    
    def __init__(self, function_expression, measure_map):
      
        self.function_expression = function_expression
        self.measure_map = measure_map

For instance, we define 3 linear time measures, create the dictionary and then we define the function

time_measure_A = TimeMeasure(condition_A, condition_B)
time_measure_B = TimeMeasure(condition_B, condition_A)
time_measure_C = TimeMeasure(condition_A, condition_C)

measure_dictionary = 
      {'A': time_measure_A, 'B': time_measure_B, 'C': time_measure_C}

derived_measure = DerivedMeasure('(A + B) / C', measure_dictionary)

measure_computer(derived_measure, dataframe)
case_concept_name
1-364285768   0 days 06:41:34.285249
1-467153946   1 days 04:26:22.637717
1-512795200   0 days 23:40:01.383292
1-537219938   0 days 08:40:38.534620
1-543979253   0 days 13:33:22.743243
                       ...
1-740861371          0 days 00:00:00
1-740862061   0 days 00:00:17.568245
1-740862080   0 days 01:04:40.765766
1-740865953   0 days 00:32:46.345588
1-740865969   0 days 00:53:39.253012
Length: 4904, dtype: timedelta64[ns]

One can also use derived measures to define boolean expressions. For instance, we can define a boolean derived measure that returns true when the number of Send Fine activities in a case is greater or equal than 1.

has_send_fine = DerivedMeasure('count_send_fine >= 1',
    {"count_send_fine": CountMeasure(TimeInstantCondition(RuntimeState.END, AppliesTo.ACTIVITY, "Send Fine"))})

measure_computer(has_send_fine, df)

If the data type used in the comparison is an object, then it has to be added as a parameter in the expression and in the measure map. For instance, in the following example, we define days90 with the value pd.Timedelta(days=90):

create_fine_to_send_fine = TimeMeasure('`concept:name` == "Create Fine"', '`concept:name` == "Send Fine"')
create_to_send_fine_90_days= DerivedMeasure("create_to_send_fine < days90", 
                                    {"create_to_send_fine":   create_fine_to_send_fine, "days90": pd.Timedelta(days=90)})
measure_computer(avg_create_to_send_fine_90_days, df, time_grouper=pd.Grouper(freq='1Y'))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ppinot4py-1.2.1.tar.gz (36.6 kB view details)

Uploaded Source

Built Distribution

ppinot4py-1.2.1-py3-none-any.whl (34.8 kB view details)

Uploaded Python 3

File details

Details for the file ppinot4py-1.2.1.tar.gz.

File metadata

  • Download URL: ppinot4py-1.2.1.tar.gz
  • Upload date:
  • Size: 36.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for ppinot4py-1.2.1.tar.gz
Algorithm Hash digest
SHA256 00a4e18712f08d509212b8e19750a2707f7de2a3fa2e27de449652b395d50181
MD5 da7b94bb71f6cbbdfef1e532f21b3dd1
BLAKE2b-256 004d03448e6f08f4b1a6ca9859b8fe3368d960accefaeb2872792cf976e2bb55

See more details on using hashes here.

File details

Details for the file ppinot4py-1.2.1-py3-none-any.whl.

File metadata

  • Download URL: ppinot4py-1.2.1-py3-none-any.whl
  • Upload date:
  • Size: 34.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for ppinot4py-1.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d8ad97f7756afd74d12457809e41c911ec1565698b09a5605e4da0fe0e2a0d03
MD5 6e45440c5a7a6ac50611163a6579c720
BLAKE2b-256 76fd5d6b6652aa9bddbb0b5503e1d6342829612942636924c7c338153592ec11

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page