Skip to main content

利用 onnxruntime 及 PaddleOCR 提供的模型, 对图片中的文字进行检测与识别.

Project description

PPOCR-ONNX

简介

利用 onnxruntime 及 PaddleOCR 提供的模型, 对图片中的文字进行检测与识别.

使用模型

  • 文字检测: ch_PP-OCRv2_det_infer
  • 方向分类: cls mobile v2
  • 文字识别: ch_PP-OCRv2_rec_infer

参考

安装

pip install ppocr-onnx

使用

from ppocronnx.predict_system import TextSystem
import cv2

text_sys = TextSystem()

# 识别单行文本
res = text_sys.ocr_single_line(cv2.imread('single_line_text.png'))
print(res)

# 批量识别单行文本
res = text_sys.ocr_lines([cv2.imread('single_line_text.png')])
print(res[0])

# 检测并识别文本
img = cv2.imread('test.png')
res = text_sys.detect_and_ocr(img)
for boxed_result in res:
    print("{}, {:.3f}".format(boxed_result.ocr_text, boxed_result.score))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ppocr-onnx-0.0.3.5.tar.gz (10.4 MB view details)

Uploaded Source

Built Distribution

ppocr_onnx-0.0.3.5-py3-none-any.whl (10.4 MB view details)

Uploaded Python 3

File details

Details for the file ppocr-onnx-0.0.3.5.tar.gz.

File metadata

  • Download URL: ppocr-onnx-0.0.3.5.tar.gz
  • Upload date:
  • Size: 10.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.8

File hashes

Hashes for ppocr-onnx-0.0.3.5.tar.gz
Algorithm Hash digest
SHA256 e7a74509ccde479e1f8cdce01a06d2cc60e1fe0de51dab3cd0e299c3833f9b53
MD5 c1184b8dba0b89f8bbf82c2d13b1c518
BLAKE2b-256 5d86ef153e1e19fdaba5cb2a9a4b111a42c1293565ee18547cf69314a611abda

See more details on using hashes here.

File details

Details for the file ppocr_onnx-0.0.3.5-py3-none-any.whl.

File metadata

  • Download URL: ppocr_onnx-0.0.3.5-py3-none-any.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.8

File hashes

Hashes for ppocr_onnx-0.0.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 94bee9bee1093d7f9175fa5ae7be881bd731fbbd07232b0f5014208f4ab90318
MD5 75b428696955cb4f3e484cf2f7203963
BLAKE2b-256 c45797ebccc1739c1af3649d3a63d7a0df12adc50e5876b3eacb9166fb1e96b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page