Skip to main content

HTTP-based client for interacting with a service for privacy-preserving record linkage with Bloom filters.

Project description

This package contains a small HTTP-based library for working with the server provided by the PPRL service package. It also contains a command-line application which uses the library to process CSV files.

Weight estimation requires additional packages which are not shipped by default. To add them, install this package using any of the following commands as desired.

$ pip install pprl_client[faker]
$ pip install pprl_client[gecko]
$ pip install pprl_client[all]

Library methods

The library exposes functions for entity pre-processing, masking and bit vector matching. They follow the data model that is also used by the PPRL service, which is exposed through the PPRL model package.

In addition to the request objects, each function accepts a base URL, a full URL and a connection timeout in seconds as optional parameters. By default, the base URL is set to http://localhost:8000. The full URL, if set, takes precedence over the base URL. The connection timeout is set to 10 seconds by default, but should be increased for large-scale requests.

Entity transformation

import pprl_client
from pprl_model import EntityTransformRequest, TransformConfig, EmptyValueHandling, AttributeValueEntity, \
    GlobalTransformerConfig, NormalizationTransformer

response = pprl_client.transform(EntityTransformRequest(
    config=TransformConfig(empty_value=EmptyValueHandling.error),
    entities=[
        AttributeValueEntity(
            id="001",
            attributes={
                "first_name": "Müller",
                "last_name": "Ludenscheidt"
            }
        )
    ],
    global_transformers=GlobalTransformerConfig(
        before=[NormalizationTransformer()]
    )
))

print(response.entities)
# => [AttributeValueEntity(id='001', attributes={'first_name': 'muller', 'last_name': 'ludenscheidt'})]

Entity masking

import pprl_client
from pprl_model import EntityMaskRequest, MaskConfig, HashConfig, HashFunction, HashAlgorithm, RandomHash, CLKFilter, \
    AttributeValueEntity

response = pprl_client.mask(EntityMaskRequest(
    config=MaskConfig(
        token_size=2,
        hash=HashConfig(
            function=HashFunction(
                algorithms=[HashAlgorithm.sha1],
                key="s3cr3t_k3y"
            ),
            strategy=RandomHash()
        ),
        filter=CLKFilter(hash_values=5, filter_size=256)
    ),
    entities=[
        AttributeValueEntity(
            id="001",
            attributes={
                "first_name": "muller",
                "last_name": "ludenscheidt"
            }
        )
    ]
))

print(response.entities)
# => [BitVectorEntity(id='001', value='SKkgqBHBCJJCANICEKSpWMAUBYCQEMLuZgEQGBKRC8A=')]

Bit vector matching

import pprl_client
from pprl_model import VectorMatchRequest, MatchConfig, SimilarityMeasure, BitVectorEntity

response = pprl_client.match(VectorMatchRequest(
    config=MatchConfig(
        measure=SimilarityMeasure.jaccard,
        threshold=0.8
    ),
    domain=[
        BitVectorEntity(
            id="001",
            value="SKkgqBHBCJJCANICEKSpWMAUBYCQEMLuZgEQGBKRC8A="
        )
    ],
    range=[
        BitVectorEntity(
            id="100",
            value="UKkgqBHBDJJCANICELSpWMAUBYCMEMLrZgEQGBKRC7A="
        ),
        BitVectorEntity(
            id="101",
            value="H5DN45iUeEjrjbHZrzHb3AyQk9O4IgxcpENKKzEKRLE="
        )
    ]
))

print(response.matches)
# => [Match(domain=BitVectorEntity(id='001', value='SKkgqBHBCJJCANICEKSpWMAUBYCQEMLuZgEQGBKRC8A='), range=BitVectorEntity(id='100', value='UKkgqBHBDJJCANICELSpWMAUBYCMEMLrZgEQGBKRC7A='), similarity=0.8536585365853658)]

Attribute weight estimation

import pprl_client
from pprl_model import AttributeValueEntity, BaseTransformRequest, TransformConfig, EmptyValueHandling, \
    GlobalTransformerConfig, NormalizationTransformer

stats = pprl_client.compute_attribute_stats(
    [
        AttributeValueEntity(
            id="001",
            attributes={
                "given_name": "Max",
                "last_name": "Mustermann",
                "gender": "m"
            }
        ),
        AttributeValueEntity(
            id="002",
            attributes={
                "given_name": "Maria",
                "last_name": "Musterfrau",
                "gender": "f"
            }
        )
    ],
    BaseTransformRequest(
        config=TransformConfig(empty_value=EmptyValueHandling.skip),
        global_transformers=GlobalTransformerConfig(
            before=[NormalizationTransformer()]
        )
    ),
)

print(stats)
# => {'given_name': AttributeStats(average_tokens=5.0, ngram_entropy=2.9219280948873623), 'last_name': AttributeStats(average_tokens=11.0, ngram_entropy=3.913977073182751), 'gender': AttributeStats(average_tokens=2.0, ngram_entropy=2.0)}

Command line interface

The pprl command exposes all the library's functions and adapts them to work with CSV files. Running pprl --help provides an overview of the command options.

$ pprl --help
Usage: pprl [OPTIONS] COMMAND [ARGS]...

  HTTP client for performing PPRL based on Bloom filters.

Options:
  --base-url TEXT                 base URL to HTTP-based PPRL service
  -b, --batch-size INTEGER RANGE  amount of bit vectors to match at a time  [x>=1]
  --timeout-secs INTEGER RANGE    seconds until a request times out  [x>=1]
  --delimiter TEXT                column delimiter for CSV files
  --encoding TEXT                 character encoding for files
  --help                          Show this message and exit.

Commands:
  estimate   Estimate attribute weights based on randomly generated data.
  mask       Mask a CSV file with entities.
  match      Match bit vectors from CSV files against each other.
  transform  Perform pre-processing on a CSV file with entities

The pprl command works on two basic types of CSV files that follow a simple structure. Entity files are CSV files that contain a column with a unique identifier and arbitrary additional columns which contain values for certain attributes that identify an entity. Each row is representative of a single entity.

id,first_name,last_name,date_of_birth,gender
001,Natalie,Sampson,1956-12-16,female
002,Eric,Lynch,1910-01-11,female
003,Pam,Vaughn,1983-10-05,male
004,David,Jackson,2006-01-27,male
005,Rachel,Dyer,1904-02-02,female

Bit vector files contain an ID column and a value column which contains a representative bit vector. These bit vectors are generally generated by masking a record from an entity file.

id,value
001,0Dr8t+kE5ltI+xdM85fwx0QLrTIgvFN35/0YvODNdOE0AaUHPphikXYy4LlArE4UqfjPs+wKtT233R7lBzSp5mwkCjTzA1tl0N7s+sFeKyIrOiGk0gNIYvA=
002,QMEIkE9TN1Quv0K0QAIk1RZD3qF7nQh0IyOYqVDf8IQkyaLGcFjiLHsEgBpU8CRSCuATbWpjEwGi3dilizySQy4miGiJolilYmwKysjseq+IFsAU3T1IRjA=
003,BqFoNZhrAVBq9SV1wBK0dUZLHDM9hCBoO4XdKCzvasSUELQeAB8+DV5tAhDl5KCSJfDCB6JG4WSoCFbozXqBYSUMqEQJE0JwhpRK6oLOcRRoGwGESDBMZwA=
004,8C9KItMTwtz4oXQvo8G0t1bTnwspnghmJwyqqcL2RIHASb4XJHAqybMCXQBm5mq6h/kdxGbblxBjhy79jRUcI60haqZhNsst0n7OUAxM/UoZVumIilRIbCA=
005,CFk4I0sKwnRoiTEOQASy1QZfHCGB1GBgYQDcZwDDtIkGGLOmLRhrQyOSlQDUDoYTbvaBRVqbkRnqmYQbDTEGlG+2y60FMmBEKtxsr0I4I00oMpuoXAsDWmA=

Pre-processing is done with the pprl transform command. It requires a base transform request file, an entity file and an output file to write the pre-processed entities to. Attribute and global transformer configurations can be provided, but at least one must be specified.

In this example, a global normalization transformer which is executed before all other attribute-specific transformers is defined. Date time reformatting is applied to the "date of birth" column in the input file.

request.json

{
  "config": {
    "empty_value": "skip"
  },
  "attribute_transformers": [
    {
      "attribute_name": "date_of_birth",
      "transformers": [
        {
          "name": "date_time",
          "input_format": "%Y-%m-%d",
          "output_format": "%Y%m%d"
        }
      ]
    }
  ],
  "global_transformers": {
    "before": [
      {
        "name": "normalization"
      }
    ]
  }
}
$ pprl transform ./request.json ./input.csv ./output.csv  
Transforming entities  [####################################]  100%

output.csv

id,first_name,last_name,date_of_birth,gender
001,natalie,sampson,19561216,female
002,eric,lynch,19100111,female
003,pam,vaughn,19831005,male
004,david,jackson,20060127,male
005,rachel,dyer,19040202,female

Masking is done with pprl mask and its subcommands. It requires a base mask request file, an entity file and an output file to write the masked entities to.

request.json

{
  "config": {
    "token_size": 2,
    "hash": {
      "function": {
        "algorithms": ["sha256"],
        "key": "s3cr3t_k3y",
        "strategy": {
          "name": "random_hash"
        }
      }
    },
    "prepend_attribute_name": true,
    "filter": {
      "type": "clk",
      "filter_size": 512,
      "hash_values": 5,
      "padding": "_",
      "hardeners": [
        {
          "name": "permute",
          "seed": 727
        },
        {
          "name": "rehash",
          "window_size": 16,
          "window_step": 8,
          "samples": 2
        }
      ]
    }
  }
}

input.csv

id,first_name,last_name,date_of_birth,gender
001,natalie,sampson,19561216,female
002,eric,lynch,19100111,female
003,pam,vaughn,19831005,male
004,david,jackson,20060127,male
005,rachel,dyer,19040202,female
$ pprl mask ./request.json ./input.csv ./output.csv
Masking entities  [####################################]  100%

output.csv

id,value
001,wAWgITvQ1/VACpRYC2EKrfCkWziyEhmyKwi5sMsFrAQVoIBygTQScPRoIIAto0AwS0ihlcAIFAcQRwccY5IOmQ==
002,cFCwQIABQ+TgSSdlGM/z54BEUgmYhA1GKtCxQAKAXFIWiPAFIQYaFArgM61pUAAeATwBlBEOEw4Oowe0rbcMGw==
003,IgK16AAISCRoCuVAb1UBZYBBhGgxSEkKeMkTUCKAx4IAsNGJBS4ShgBAGIapBIQWJLiBFEEKAIWAGYS8ZZGMKw==
004,ZlBkyoYIEWmeaxbPDNng5JjHACkCAJwjlBCJQBJ4ZBSyOAukACUahOAFQ20oNwTQEDRA005+VUUfsUQcKCGNxg==
005,cUekQFQkI7TpTcRwmcNDoodRRBshlSEiAUjBQiMlxBLTmODMJICmDmxgUqYKonQEMFD58QsogRQFIgYUwJDOHA==

Matching is done with the pprl match command. It allows the matching of multiple bit vector input files at once. If more than two files are provided, the command will pick out pairs of files and matches their contents against one another.

In this example, the bit vectors of two files are matched against each other. The Jaccard index is used as a similarity measure and a match threshold of 70% is applied.

request.json

{
  "config": {
    "measure": "jaccard",
    "threshold": 0.7
  }
}

domain.csv

id,value
001,wAWgITvQ1/VACpRYC2EKrfCkWziyEhmyKwi5sMsFrAQVoIBygTQScPRoIIAto0AwS0ihlcAIFAcQRwccY5IOmQ==
002,cFCwQIABQ+TgSSdlGM/z54BEUgmYhA1GKtCxQAKAXFIWiPAFIQYaFArgM61pUAAeATwBlBEOEw4Oowe0rbcMGw==
003,IgK16AAISCRoCuVAb1UBZYBBhGgxSEkKeMkTUCKAx4IAsNGJBS4ShgBAGIapBIQWJLiBFEEKAIWAGYS8ZZGMKw==
004,ZlBkyoYIEWmeaxbPDNng5JjHACkCAJwjlBCJQBJ4ZBSyOAukACUahOAFQ20oNwTQEDRA005+VUUfsUQcKCGNxg==
005,cUekQFQkI7TpTcRwmcNDoodRRBshlSEiAUjBQiMlxBLTmODMJICmDmxgUqYKonQEMFD58QsogRQFIgYUwJDOHA==

range.csv

id,value
101,kUSyxIgtIDSAB7ZYDkFQRZpFoMkCjCCCbDTWAUJTRAAEBpspBX4PNUZKi1AIVCABAjg6EAoKuwVleeUYgRBYoQ==
102,IAA0YE4MGexIiYdEjwNzoOKmIA4CEHEiKQASYFPhxQTQlPAAgYW3AWBYmQJ8YMoaAj0ZkoOrFyUmFo52TDcIKw==
103,BFAwREkkQbTdzddgDHFWgMRJMyxAMW+jq2ASICMBtIEr+YDCBRUgxEDIsQpciO4mAK3h2cIbXFQCMlaVpJPZIQ==
104,wBWgITvQ2/VACpRYC2EKrfCkWxiyEhmyKwi5sMsFrBQVoIBygTQScPRoIIAto0AwS0ihldAIFAcQRwccY5IOmQ==
105,QCCwIKQAED5AjaZYmodDcZAEBKkIxgAiDfEUoDKEdgEAEJAMAwcfQEbQkaQ4ANAABqiUscAKPQZEMJxRhTGIGQ==
$ pprl match request.json domain.csv range.csv output.csv
Matching bit vectors from domain.csv and range.csv  [####################################]  100%

output.csv

domain_id,domain_file,range_id,range_file,similarity
001,domain.csv,104,range.csv,0.9690721649484536

Weight estimation is done with the pprl estimate command. It generates random data based off of user specification and computes estimates for attribute weights. Data can be generated using Faker and Gecko. These are exposed through the faker and gecko subcommands respectively. Both subcommands require a file that tell Faker and Gecko how to generate data, as well as a path to a file to write results to. Refer to the example files in the test asset directory.

$ pprl estimate faker tests/assets/faker-config.json faker-output.json

faker-output.json

[
  {
    "attribute_name": "given_name",
    "weight": 7.657958943890718,
    "average_token_count": 7.5686
  },
  {
    "attribute_name": "last_name",
    "weight": 7.444573503220938,
    "average_token_count": 7.5204
  },
  {
    "attribute_name": "gender",
    "weight": 1.9999971146079947,
    "average_token_count": 2.0
  },
  {
    "attribute_name": "street_name",
    "weight": 7.605565770282046,
    "average_token_count": 16.2188
  },
  {
    "attribute_name": "municipality",
    "weight": 7.659422921807241,
    "average_token_count": 9.952
  },
  {
    "attribute_name": "postcode",
    "weight": 6.7812429085107,
    "average_token_count": 5.9464
  }
]

License

MIT.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pprl_client-0.3.3.tar.gz (17.8 kB view details)

Uploaded Source

Built Distribution

pprl_client-0.3.3-py3-none-any.whl (14.9 kB view details)

Uploaded Python 3

File details

Details for the file pprl_client-0.3.3.tar.gz.

File metadata

  • Download URL: pprl_client-0.3.3.tar.gz
  • Upload date:
  • Size: 17.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Linux/6.8.0-48-generic

File hashes

Hashes for pprl_client-0.3.3.tar.gz
Algorithm Hash digest
SHA256 95b3a2541b0c3b26990dff746456ef8d1d86c60d97b86fb005cb1b71a0dea976
MD5 541c063bf6ad595ce5226bdf079a1aee
BLAKE2b-256 bf217d1473e35ae85aacca50f3d366a7a6931123bd393c0390bd56159dc47f61

See more details on using hashes here.

File details

Details for the file pprl_client-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: pprl_client-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 14.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Linux/6.8.0-48-generic

File hashes

Hashes for pprl_client-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f4b087feb4e6734a84261374e4d9f191038a0010c282f7668c4a471763e156fe
MD5 af5836c6f8ad729a854745cce72a1d9d
BLAKE2b-256 50f7df1b8794472c30e89c9915e16146c280cce5741be0ec92510533a41cb51f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page