Speech Emotion Recognition toolkit on PaddlePaddle
Project description
基于PaddlePaddle实现的语音情感识别系统
本项目是一个语音情感识别项目,目前效果一般,供大家学习使用。后面会持续优化,提高准确率,如果同学们有好的建议,也欢迎来探讨。
欢迎大家扫码入知识星球或者QQ群讨论,知识星球里面提供项目的模型文件和博主其他相关项目的模型文件,也包括其他一些资源。
使用准备
- Anaconda 3
- Python 3.8
- PaddlePaddle 2.4.0
- Windows 10 or Ubuntu 18.04
模型测试表
模型 | Params(M) | 预处理方法 | 数据集 | 类别数量 | 准确率 | 获取模型 |
---|---|---|---|---|---|---|
BidirectionalLSTM | 1.8 | Flank | RAVDESS | 8 | 0.95193 | 加入知识星球获取 |
说明:
- RAVDESS数据集只使用
Audio_Speech_Actors_01-24.zip
安装环境
- 首先安装的是PaddlePaddle的GPU版本,如果已经安装过了,请跳过。
conda install paddlepaddle-gpu==2.4.0 cudatoolkit=10.2 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/
- 安装ppser库。
使用pip安装,命令如下:
python -m pip install ppser -U -i https://pypi.tuna.tsinghua.edu.cn/simple
建议源码安装,源码安装能保证使用最新代码。
git clone https://github.com/yeyupiaoling/SpeechEmotionRecognition-PaddlePaddle.git
cd SpeechEmotionRecognition-PaddlePaddle/
pip install .
准备数据
生成数据列表,用于下一步的读取需要,项目默认提供一个数据集RAVDESS,下载这个数据集并解压到dataset
目录下。
生成数据列表,用于下一步的读取需要,项目默认提供一个数据集RAVDESS,这个数据集的介绍页面,这个数据包含中性、平静、快乐、悲伤、愤怒、恐惧、厌恶、惊讶八种情感,本项目只使用里面的Audio_Speech_Actors_01-24.zip
,数据集,说话的语句只有Kids are talking by the door
和Dogs are sitting by the door
,可以说这个训练集是非常简单的。下载这个数据集并解压到dataset
目录下。
python create_data.py
如果自定义数据集,可以按照下面格式,audio_path
为音频文件路径,用户需要提前把音频数据集存放在dataset/audio
目录下,每个文件夹存放一个类别的音频数据,每条音频数据长度在3秒左右,如 dataset/audio/angry/······
。audio
是数据列表存放的位置,生成的数据类别的格式为 音频路径\t音频对应的类别标签
,音频路径和标签用制表符 \t
分开。读者也可以根据自己存放数据的方式修改以下函数。
执行create_data.py
里面的get_data_list('dataset/audios', 'dataset')
函数即可生成数据列表,同时也生成归一化文件,具体看代码。
python create_data.py
生成的列表是长这样的,前面是音频的路径,后面是该音频对应的标签,从0开始,路径和标签之间用\t
隔开。
dataset/Audio_Speech_Actors_01-24/Actor_13/03-01-01-01-02-01-13.wav 0
dataset/Audio_Speech_Actors_01-24/Actor_01/03-01-02-01-01-01-01.wav 1
dataset/Audio_Speech_Actors_01-24/Actor_01/03-01-03-02-01-01-01.wav 2
注意: create_data.py
里面的create_standard('configs/bi_lstm.yml')
函数必须要执行的,这个是生成归一化的文件。
提取特征(可选)
在训练过程中,首先是要读取音频数据,然后提取特征,最后再进行训练。其中读取音频数据、提取特征也是比较消耗时间的,所以我们可以选择提前提取好取特征,训练模型的是就可以直接加载提取好的特征,这样训练速度会更快。这个提取特征是可选择,如果没有提取好的特征,训练模型的时候就会从读取音频数据,然后提取特征开始。提取特征步骤如下:
- 执行
extract_features.py
,提取特征,特征会保存在dataset/features
目录下,并生成新的数据列表train_list_features.txt
和test_list_features.txt
。
python extract_features.py --configs=configs/bi_lstm.yml --save_dir=dataset/features
- 修改配置文件,将
dataset_conf.train_list
和dataset_conf.test_list
修改为train_list_features.txt
和test_list_features.txt
。
训练
接着就可以开始训练模型了,创建 train.py
。配置文件里面的参数一般不需要修改,但是这几个是需要根据自己实际的数据集进行调整的,首先最重要的就是分类大小dataset_conf.num_class
,这个每个数据集的分类大小可能不一样,根据自己的实际情况设定。然后是dataset_conf.batch_size
,如果是显存不够的话,可以减小这个参数。
# 单卡训练
CUDA_VISIBLE_DEVICES=0 python train.py
# 多卡训练
python -m paddle.distributed.launch --gpus '0,1' train.py
训练输出日志:
[2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - configs: configs/bi_lstm.yml
[2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - local_rank: 0
[2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - pretrained_model: None
[2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - resume_model: None
[2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - save_model_path: models/
[2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:16 - use_gpu: True
[2023-08-18 18:48:49.662963 INFO ] utils:print_arguments:17 - ------------------------------------------------
[2023-08-18 18:48:49.680176 INFO ] utils:print_arguments:19 - ----------- 配置文件参数 -----------
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:22 - dataset_conf:
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:25 - aug_conf:
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - noise_aug_prob: 0.2
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - noise_dir: dataset/noise
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - speed_perturb: True
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - volume_aug_prob: 0.2
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - volume_perturb: False
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:25 - dataLoader:
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - batch_size: 32
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - num_workers: 4
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - do_vad: False
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:25 - eval_conf:
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - batch_size: 1
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:27 - max_duration: 3
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - label_list_path: dataset/label_list.txt
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - max_duration: 3
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - min_duration: 0.5
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - sample_rate: 16000
[2023-08-18 18:48:49.681177 INFO ] utils:print_arguments:29 - scaler_path: dataset/standard.m
[2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - target_dB: -20
[2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - test_list: dataset/test_list.txt
[2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - train_list: dataset/train_list.txt
[2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - use_dB_normalization: True
[2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:22 - model_conf:
[2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - num_class: None
[2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:22 - optimizer_conf:
[2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - learning_rate: 0.001
[2023-08-18 18:48:49.682177 INFO ] utils:print_arguments:29 - optimizer: Adam
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - scheduler: WarmupCosineSchedulerLR
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:25 - scheduler_args:
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:27 - max_lr: 0.001
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:27 - min_lr: 1e-05
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:27 - warmup_epoch: 5
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - weight_decay: 1e-06
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:22 - preprocess_conf:
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - feature_method: CustomFeatures
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:22 - train_conf:
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - enable_amp: False
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - log_interval: 10
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:29 - max_epoch: 60
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:31 - use_model: BidirectionalLSTM
[2023-08-18 18:48:49.683184 INFO ] utils:print_arguments:32 - ------------------------------------------------
[2023-08-18 18:48:49.683184 WARNING] trainer:__init__:66 - Windows系统不支持多线程读取数据,已自动关闭!
------------------------------------------------------------------------------------------------
Layer (type) Input Shape Output Shape Param #
================================================================================================
Linear-1 [[1, 312]] [1, 512] 160,256
LSTM-1 [[1, 1, 512]] [[1, 1, 512], [[2, 1, 256], [2, 1, 256]]] 1,576,960
Tanh-1 [[1, 512]] [1, 512] 0
Dropout-1 [[1, 512]] [1, 512] 0
Linear-2 [[1, 512]] [1, 256] 131,328
ReLU-1 [[1, 256]] [1, 256] 0
Linear-3 [[1, 256]] [1, 6] 1,542
================================================================================================
Total params: 1,870,086
Trainable params: 1,870,086
Non-trainable params: 0
------------------------------------------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.03
Params size (MB): 7.13
Estimated Total Size (MB): 7.16
------------------------------------------------------------------------------------------------
[2023-08-18 18:48:51.425936 INFO ] trainer:train:378 - 训练数据:4407
[2023-08-18 18:48:53.526136 INFO ] trainer:__train_epoch:331 - Train epoch: [1/60], batch: [0/138], loss: 1.80256, accuracy: 0.15625, learning rate: 0.00001000, speed: 15.24 data/sec, eta: 4:49:49
····················
评估
执行下面命令执行评估。
python eval.py --configs=configs/bi_lstm.yml
评估输出如下:
[2024-02-03 15:13:25.469242 INFO ] trainer:evaluate:461 - 成功加载模型:models/BiLSTM_Emotion2Vec/best_model/model.pth
100%|██████████████████████████████| 150/150 [00:00<00:00, 1281.96it/s]
评估消耗时间:1s,loss:0.61840,accuracy:0.87333
评估会出来输出准确率,还保存了混淆矩阵图片,保存路径output/images/
,如下。
注意:如果类别标签是中文的,需要设置安装字体才能正常显示,一般情况下Windows无需安装,Ubuntu需要安装。如果Windows确实是确实字体,只需要字体文件这里下载.ttf
格式的文件,复制到C:\Windows\Fonts
即可。Ubuntu系统操作如下。
- 安装字体
git clone https://github.com/tracyone/program_font && cd program_font && ./install.sh
- 执行下面Python代码
import matplotlib
import shutil
import os
path = matplotlib.matplotlib_fname()
path = path.replace('matplotlibrc', 'fonts/ttf/')
print(path)
shutil.copy('/usr/share/fonts/MyFonts/simhei.ttf', path)
user_dir = os.path.expanduser('~')
shutil.rmtree(f'{user_dir}/.cache/matplotlib', ignore_errors=True)
预测
在训练结束之后,我们得到了一个模型参数文件,我们使用这个模型预测音频。
python infer.py --audio_path=dataset/test.wav
打赏作者
打赏一块钱支持一下作者
参考资料
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file ppser-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: ppser-0.0.3-py3-none-any.whl
- Upload date:
- Size: 39.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 82b44628bc249c1d71c6c0ebf8afabdb62924dc750343675f6966a3a6e80a7ad |
|
MD5 | 6059196a43d26bdffa4c6d94224ad51d |
|
BLAKE2b-256 | 186bdd98bb9e4232db1707fca83fed232ea5767f7aacabbb3bac3b528dd31c93 |