Skip to main content

Make PowerPoint presentations from data

Project description

# PPTGen

PPTGen lets you modify the contents of a PowerPoint presentation based on data.
For example, you can:

- Update charts, images and text from data
- Create a series of slides using a template from spreadsheets or database

It is a command line utility and a Python function packaged with Gramex.
It forms the basis of PPTXHandler.

## Command line usage

PPTGen uses a configuration to modify files. The configuration defines the
`source`, `target`, `data` and any number of rules.

On the command line, it accepts a YAML file as input. For example, this
`text.yaml` copies input.pptx to output.pptx and changes the title to "New Title":

```yaml
source: input.pptx # optional path to source. Default to blank PPT with 1 slide
target: output.pptx # required path to save output as
change:
Title 1: # Take the shape named "Title 1"
text: New Title # Replace its text with "New Title"
```

This can be run as:

pptgen text.yaml

You can override parameters from the command line like this:

pptgen config.yaml --target new.pptx "--change.Title 1.text" "Updated title"

## API usage

As an API, it accepts keyword arguments as the configuration. For example:

```python
from pptgen import pptgen
pptgen(
source='input.pptx', # optional path to source. Defaults to blank PPT with 1 slide
target='output.pptx', # optional target. Otherwise, returns the pptx.Presentation()
change={ # Configurations are same as when loading from the YAML file
'Title 1': { # Take the shape named "Title 1"
'text' 'New Title' # Replace its text with "New Title"
}
}
)
```

Here is another example that changes a bar chart based on data:

```python
import pandas as pd
from pptgen import pptgen
data = {'chart_data': pd.read_csv('data.csv')}
pptgen(
source='input.pptx',
target='output.pptx',
edit_chart={
'Bar Chart Shape Name': {
'chart': {
'data': data['chart_data'],
'x': 'Category',
'size': 'PreY',
'color': {
'function': "{'CurY': '#D73027', 'PreY': '#1A9850', 'PPresY': '#FFFFBF', 'Size': '#cccccc'}"
}
}
}
}
)
```

# Configuration

The configuration accepts the following top-level keys:

- `source`: optional. Path to input Presentation to be used as the source.
Defaults to a blank presentation with 1 slide.
- `target`: required for the command line, and is where the output PPTX is saved.
It is optional for the API. If None, `pptgen` returns the Presentation object.
- `data`: optional dataset or a dictionary. This is described below.
- `register`: Optional to register any new custom commands to pptgen. It accepts a function which accepts three parameter `shape`, `spec`, and `data`. Available `immutable` commands in pptgen are `css`, `text`, `image`, `chart`, `table`, `sankey`, `bullet`, `replace`, `treemap`, `heatgrid` and `calendarmap`.
- All other keys are treated as rules that are described below.

## Data

PPTGen can change presentations with data from various sources. It uses
`gramex.data.filter`. It supports these keys:

- `url:` Pandas DataFrame, sqlalchemy URL or file name
- `ext:` file extension (if url is a file). Defaults to url extension
- `args`: optional filters to apply to dataset. Passed as a dict of lists
- `table:`: table name (if url is an SQLAlchemy URL)
- `query:` optional SQL query to execute (if url is a database)
- `transform:`: optional in-memory transform. Takes a DataFrame and returns a DataFrame
- Any additional keys are passed to `gramex.cache.open` or `sqlalchemy.create_engine`

```yaml
data:
cities: {url: cities.csv} # Load cities.csv into "cities" key
sales: {url: sales.xlsx, sheet: Sheet1} # Load Sheet1 from sales.xslx into "sales" key
tweets: {url: tweets.json} # Load JSON data into "tweets" key
sample: {url: mysql://server/db, table: sample} # Load sample data from MySQL
filter:
url: cities.csv # Load cities.csv
args: # Filter results
Country: [Egypt, Sudan] # WHERE column Country is Egypt or Sudan
Population>: 100000 # AND column Population is 100,000+
```

## Rules

The configuration can define any number of rules. Rules have:

- one or more [shape names](#shapes), and the list of [commands](#commands) to
apply to those shapes.
- an optional [slide selector](#slides) that restricts which slide they apply to.
By default, rules apply to all slides.

In the example below, there is 1 rule called `change`. It does no slide selector,
so it applies to all slides. It has 1 shape: `Title 1` with 1 command: `text`:

```yaml
source: input.pptx # optional path to source. Default to blank PPT with 1 slide
target: output.pptx # required path to save output as
change:
Title 1: # Take the shape named "Title 1"
text: New Title # Replace its text with "New Title"
```

### Slides

By default, changes are applied to all slides. To restrict changes to a specific
slide, use:

1. `slide-number` slide number or list (with the first slide as slide 1).
1. `slide-title` is a regular expression that matches the slide title.

```yaml
source: input.pptx
target: output.pptx
rule-1: # rule-1 applies to all slides
...
rule-2:
slide-number: 1 # rule-2 applies only to the first slide of the source
...
rule-3:
slide-title: Hello # rule-3 applies to slides with the title "Hello" (regex)
...
...
```

To create multiple slides from data, add `data:` to the change. For example:

```yaml
source: input.pptx
target: output.pptx
data:
sales: {url: sales.xlsx}
change-title:
data: data['sales'].ix[0].to_dict(orient='records') # For each row in the sales dataset (defined above)
slide-number: 1 # ... copy slide 1 and apply this change
Title 1:
text: "Region {{ region }} has sales of ${{ sales }}"
```

This `data:` is an [expression](#expressions) using the root `data:` variables.
It can be used with

- `slide-number` to repeat 1 or more slides. For example `slide-number: [1,2]`
will copy slides 1 & 2 as many times as there are rows of data
- `slide-title` to repeat individual slides or multiple single slides

Slide numbers always refers to the source slide number, not the target slide
number. Even if a slide is duplicated in the target, source slide numbers do not
change.

### Shapes

In PowerPoint, all shapes have names. To see shape names, select Home tab >
Drawing group > Arrange drop-down > Selection pane. Or press ALT + F10.

![Selection pane](help/selection-pane.png)

To change the shape names, double-click on the name in the selection pane.

You can specify changes to one or more shapes in a [rule](#rules). For example:

```yaml
rule-1:
Title 1:
text: New title
background-color: red
Text 1:
text: New text
color: green
```

... changes 2 shapes named `Title 1` and `Text 1`.

Shape names may refer to native elements or [groups](#groups).

### Groups

Shape names may refer to groups. To change groups' contents, use a nested
configuration. For example, if "Group 1" has "Caption" and "Picture" inside it,
this `config-group.yaml` replaces those:

```yaml
source: input.pptx
target: output.pptx
change-image:
Group 1: # Take the shape named "Group 1"
Caption: # Find the shape named "Caption" inside it
text: New caption # Change its text to "New caption"
Picture: # Find the shape named "Picture" inside it
image: sample.png # Replace the image with sample.png
```

### Register: Register a new command to PPTGen

Register let you create a custom command. It accepts a function which will accepts three parameters, `shape`, `spec`(configuration for a shape, config under the shape name), `data` in same order. It will not accept any other parameter except these 3. Any existing command can not be overwrite. Return an immutable command list.

```yaml
source: input.pptx
target: output.pptx
data:
load_data: {url: data.csv}
register:
custom_command1: view.custom_command1 # Registering a new command as `custom_command1.`
custom_command2: view.custom_command2 # Registering a new command as `custom_command2.`
custom_command3:
function: view.custom_command3 # Registering a new command as `custom_command3.`

custom-config: # Rule
Shape Name 1: # Shape Name
custom_command:
.... Configuration
Shape Name 2:
custom_command2:
.... Configuration
Shape Name 3:
custom_command3:
.... Configuration

```

## Commands

Shapes can be changed using 1 or more commands. These commands can change the
shape's style and content, or add new content (like charts).

### CSS

The following CSS-like commands change the shape's display attributes:

- `data`: Loads data
- `style`: Accepts css like properties

- `opacity`: sets the shape's opacity level as a decimal from 0 - 1
- `color`: sets the text / foreground color as CSS colors
- `fill`: sets the shape's background color as CSS colors
- `stroke`: sets the shape outline color as CSS colors
- `width`: sets the shape width in points
- `height`: sets the shape height in points
- `left`: sets the shape X position in points
- `top`: sets the shape Y position in points
- `font-size`: sets the font size in points
- `font-family`: sets the font family as a font name

Example:
```yaml
Rectangle 1: # Take the shape named "Rectangle 1"
css:
data: data['sales']
style:
opacity: 0.5
color: '#ff0000'
fill: '#ffff00'
stroke: '#ffff00'
width: 100
height: 150
left: 30
top: 50
font-size: 14
font-family: Georgia
```
CSS colors can be specified in the same way they can in CSS.
1 point is 1/72 inches. All `style` elements and `data` will accept python expression or python function.

Values support [expressions](#expressions).

### Text

To change the title on the input slide to "New title", use this configuration:

```yaml
Title 1: # Take the shape named "Title 1"
text: New Title # Replace its text with "New Title"
```

`text:` values support [templates](#templates).

### Replace

To *substitute* text instead of [replacing the full text](#text), use:

```yaml
Title 1: # Take the shape named "Title 1"
replace: # Replace these keywords
"Old": "New" # Old -> New
"Title": "Heading" # Title -> Heading
```

Replacement only works for words that have the same formatting. For example, in
some_where_, "where" is underlined. You cannot replace "somewhere". But you can
replace "some" and "where" independently.

`replace:` values support [templates](#templates).

### Image

To change the picture on an image, use:

```yaml
Picture 1: # Take the shape named "Picture 1"
image: sample.png # Replace the image with sample.png
```

`image:` values support [template](#templates), and can be a URL or file path.

### Table

Modifies existing tables. It accepts these keys:

- `data:` optional data [expression](#expressions) to render as the table. The
table expands on shrinks to accommodate the rows and columns in the data.
- `style:` optional common css for all columns. E.g.- color, fill, font-size etc. These properties can be ovewrite inside a column. If not then property will be common for all columns.
- `bold`: True or False, if True text will be show in bold.
- `fill`: Color of the cells.
- `color`: Text color.
- `italic`: To set text's itallic style.
- `underline`: To set text's underline style.
- `font-size`: Font size of text.
- `font-family`: Text's font family.
- `gradient:` optional gradient name (binary, Blues, BuGn, BuPu, gist_yarg, GnBu, Greens, Greys, Oranges, OrRd, PuBu, PuBuGn, PuRd, Purples, RdPu, Reds, YlGn, YlGnBu, YlOrBr, YlOrRd, BrBG, bwr, coolwarm, PiYG, PRGn, PuOr, RdBu, RdGy, RdYlBu, RdYlGn, seismic).
- `min:` optional minimum. Defaults to the column's min value
- `max:` optional maximum. Defaults to the column's max value
- `columns:` A dictionary config for the columns. Inside this style properties can be defined and can overwrite common styles from `style` section. Only defined columns inside `columns` section will get populated inside table.

```yaml
columns:
Category: {} # Not overwriting common css styles but Category column will be shown in table
Sales: # Defining style for Sales column
gradient: Greens
font-size: 14
Profit: # Defining style for Profit column
font-family: Georgia
```

```yaml
source: table-input.pptx
target: table-output.pptx
data:
table_data: {ext: csv, url: table-data.csv}

new-edit-table:
Table:
table:
data: data['table_data']
style: # Common CSS for all the cells
font-size: 18
text-align: center
italic: True
underline: True
columns:
Sales: # Common CSS will get over-write for Sales column
gradient: Reds
GrossProfit: # Common CSS will get over-write for GrossProfit column
font-size: 30
bold: False
underline: False
italic: False
color: '#ff00ff'
```

### Replicate

To create multiple shapes using data, use `replicate:` and `data:`. For example:

```yaml
data:
sales: {xlsx: sales.xlsx}
multiple-objects: # Rule
# Slide 1, 2 will get replicated for all Categories (that is unique groups from groupby below), if slide-number is defined else all slides will get replicated.
slide-number: [1, 2] # This rule will get apply only on these slides.
data: data['sales'].groupby('Category')
replicate: True # Entire rule will replicate for defined slides, if slide-number is defined else all slides will get replicated.
Picture 1: # Take the Picture 1 shape
margin: 10 # With a padding of 10 units
image: "{{ region }}.png" # Change the picture using this template
```

### Stack

Replicate a shape multiple times based on data vertically or horizontally. For example:

```yaml
data:
sales: {xlsx: sales.xlsx}
multiple-objects: # Rule
Text 1: # Take the Picture 1 shape
data: data['sales'].to_dict(orient='records')
stack: horizontal # Lay the images out horizontally to the right
margin: 10 # With a padding of 10 units
text: "{{ Category }}" # Change the text using this template
```


This `data:` is an [expression](#expressions) using the root `data:` variables.
For each row in `data`, the shape is duplicated and laid out based on `replicate:`.

`stack:` supports these layouts:

- `horizontal` copies the element right with an optional `margin` (default: 0)
- `vertical` copies the element below with an optional `margin` (default: 0)

### Templates

For commands that support templates, values inside `{{ ... }}` are evaluated as
Python expressions in the context of `data`.

For example:

```yaml
data:
tweets: tweets.json
change:
Title 1:
text: `Tweet from @{{ tweets[0]['user']['screen_name'] }}`
```

... will replace the contents inside `{{ ... }}` with the value of
`tweets[0]['user']['screen_name']` evaluated in Python. The variable `tweets` is
the result of loading `tweets.json`.

### Expressions

For commands that support expressions, values are evaluated as Python expressions
in the context of data. For example:

```yaml
data:
tweets: tweets.json
change:
slide: 1
data: sales.groupby('city') # replicates slide 1 for every item in sales.groupby('city')
```

### Deprecated commands

- `rectangle`: use [CSS](#css) commands instead
- `oval`: use [CSS](#css) commands instead


## Native charts

To modify the data and attributes for an existing native chart, use `chart:`.
This supports the following chart types:

- Bar charts: Clustered Bar, Stacked Bar, 100% Stacked Bar
- Column charts: Clustered Column, Stacked Column, 100% Stacked Column
- Line charts: Line, Stacked Line, 100% Stacked Line, Line with Markers, Stacked Line with Markers, 100% Stacked Line with Markers
- Area charts: Area, Stacked Area, 100% Stacked Area (3D area not supported)
- Scatter charts: Scatter, Scatter with Straight Lines, Scatter with Smooth Lines, Scatter with Straight Lines and Markers, Scatter with Smooth Lines and Markers
- Bubble charts: Bubble, 3-D Bubble
- Radar charts: Radar, Radar with Markers, Filled Radar
- Donut charts: Doughnut, Doughnut Exploded
- Pie charts: Pie, Pie Exploded, Bar of Pie (3D pie not supported)

Here are examples that assume the following configuration:

```yaml
source: input.pptx # This must already have the relevant chart
target: output.pptx
data: # This dictionary is available to all charts as "data"
sales: {url: sales.csv} # The examples assume a dataset called "sales"
```

Here are examples for various charts:

```yaml
edit-charts: # Rule name
Bar Chart Name:
chart:
data: data['sales'][['Category', 'Sales', 'Profit', 'Growth']]
x: Category
color: # Define colors
Sales: #D73027 # Specify color of sales line in 6-digit hex
Profit: #1A9850 # Specify color of profit line
Growth: #cccccc # Specify color of profit line

Column Chart Name:
chart:
data: data['sales'][['Category', 'Sales', 'Profit', 'Growth']]
x: Category
color: # Define colors
Sales: #D73027 # Specify color of sales line in 6-digit hex
Profit: #1A9850 # Specify color of profit line
Growth: #cccccc # Specify color of profit line

Line Chart Name:
chart:
data: data['sales'][['Category', 'Sales', 'Profit', 'Growth']]
x: Category
color: # Define colors
Sales: #D73027 # Specify color of sales line in 6-digit hex
Profit: #1A9850 # Specify color of profit line
Growth: #cccccc # Specify color of profit line

Area Chart Name: # Name of the chart shape. Case sensitive
chart:
data: data['sales'][['Category', 'Sales', 'Profit', 'Growth']] # Use sales data
x: Category # The x-axis is the Category column. Other columns are Y-axis values
color: # Define colors
Sales: #D73027 # Specify color of sales line in 6-digit hex
Profit: #1A9850 # Specify color of profit line
Growth: #cccccc # Specify color of profit line
opacity: 0.50 # Constant opacity for all lines

Scatter Chart Name:
chart:
data: data['sales'][['Category', 'Sales', 'Profit', 'Growth']]
x: Category
color: # Define colors
Sales: #D73027 # Specify color of sales line in 6-digit hex
Profit: #1A9850 # Specify color of profit line
Growth: #cccccc # Specify color of profit line

Bubble Chart Name:
chart:
data: data['sales'][['Category', 'Sales', 'Profit', 'Growth']]
x: Category
size: Growth # Optional: Column name from data for the size of the bubbles, if not defined default size will be 1
color: # Define colors
Sales: #D73027 # Specify color of sales line in 6-digit hex
Profit: #1A9850 # Specify color of profit line
Growth: #cccccc # Specify color of profit line

Radar Chart Name:
chart:
data: data['sales'][['Category', 'Sales', 'Profit', 'Growth']]
x: Category
color: # Define colors
Sales: #D73027 # Specify color of sales line in 6-digit hex
Profit: #1A9850 # Specify color of profit line
Growth: #cccccc # Specify color of profit line

Donut Chart Name:
chart:
data: data['sales'][['Category', 'Sales', 'Profit', 'Growth']]
x: Category
color: # Define colors
Sales: #D73027 # Specify color of sales line in 6-digit hex
Profit: #1A9850 # Specify color of profit line
Growth: #cccccc # Specify color of profit line

Pie Chart Name:
chart:
data: data['sales'][['Category', 'Sales', 'Profit', 'Growth']]
x: Category
color: # Define colors
Sales: #D73027 # Specify color of sales line in 6-digit hex
Profit: #1A9850 # Specify color of profit line
Growth: #cccccc # Specify color of profit line
```

The following keys can also be specified as an [expression](#expressions) and python functions:
`data:`, `x:`, `color:`, `opacity:`, `size:`.

For example, this example sets the opacity of columns named "dummy" as 0.2, and
other columns as 1.0.

```yaml
opacity:
function: '{col: 0.2 if "dummy" in col else 1.0 for col in data.columns}'
```

## Custom charts

pptgen lets you create these custom charts:

- Bullet chart
- Calendarmap
- Heatgrid
- Sankey
- Treemap

To create these, add a rectangle shape (no other shape is allowed) in your slide.
When a custom chart is applied on that rectangle, it replaces the rectangle with
the chart.

### Bullet

- `data`: Actual value.
- `poor`: Poor value.
- `good`: Good value.
- `target`: Target value.
- `gradient`: Optional. Default `RdYlGn`.
- `text`: Default `True`. Optional, if present text will be shown as per format. Text can be overwrite inside `style.data.text` or `style.target.text` section if defined there.
- `style`: Optional `dict`, accepts css properties `e.g:- font-color, fill, opacity etc.`

Example:

```yaml
draw-bullet:
Bullet Rectangle:
bullet:
data: data['bullet_data']['data'].ix[0]
poor: data['bullet_data']['poor'].ix[0]
good: data['bullet_data']['good'].ix[0]
target: data['bullet_data']['target'].ix[0]
average: data['bullet_data']['average'].ix[0]
orient: horizontal
gradient: 'Oranges'
text:
function: "lambda v: '%.1f' % v"
style:
font-size: 10 # Common css for all items(data, target, poor, good and average)
color: '#ff0000'
data: # Overwriting CSS for data
font-size: 12
fill: #ff00ff
target: # Overwriting CSS for target
text: False # Overwriting text for text. Text will not be shown
font-size: 12
color: '#cccccc'
```

The following keys can also be specified as an [expression](#expressions) and python functions:
`data:`, `target:`, `poor:`, `good:`, `average:`, `gradient`, `text` along will all style properties such as under style section `font-size`, `opacity`, `fill`, `color` etc.

### Calendarmap

- `width`: Width and height of each cell(in pixel) in calendarmap.
- `weekstart`: Weekstart value `date`.
- `gradient`: Optional, default `RdYlGn`.
- `format`: Number format to be shown in top/left bar if `label_top/lebel_left` defined.
- `lo`: Min value for color scale `default min from data`.
- `hi`: High value for color scale `default max from data`.
- `label_top`: Top margin for the calendermap `default 0`.
- `label_left`: Left margin for the calendermap `default 0`.
- `style`: A `dict`, accepts `CSS` properties e.g-`color, fill, opacity, font-size, etc.`

Example:

```yaml
draw-calendar:
Calendar Rectangle:
calendarmap:
data:
function: data['calendar_data'].sort_values(by=['date_time']).set_index('date_time')['random_column']
width: 40
weekstart: 6
label_top: 80
label_left: 80
startdate: data.index[0]
style:
color: '#000000'
```

The following keys can also be specified as an [expression](#expressions) and python functions:
`data:`, `startdate:`, `lo:`, `hi:`, `weekstart:` and subelements of `style` section.

### Heatgrid

- `data`: A DataFrame.
- `row`: Columns name from data which will be get treated as `row` in heatgrid.
- `column`: Columns name from data which will be get treated as `column` in heatgrid.
- `value`: Columns name from data to show for each cell heatgrid.
- `text`: Default `False` if defined text inside cell will be formated.
- `left-margin`: In percentage(0-1) of total width of shape. Left margin from the shape from where heatgrid will start populating.
- `cell-width`: Width of each cell. Default based on columns width of shape will defined.
- `cell-height`: Height of each cell. Default based on number of rows height of shape will defined.
- `na-text`: Treat `NA` values text representation.
- `na-color`: Cell color for `NA` values.
- `style`: optional `dict`, to apply css properties.

Example:

```yaml
draw-heatgrid:
Heatgrid Rectangle:
heatgrid:
data: data['heatgrid_data']
row: name
column: hour
value: value
text: True
left-margin: 0.20
cell-width: 30
cell-height: 30
na-text: NA
na-color: '#cccccc'
style:
gradient: RdYlGn
color: '#ff0000'
font-size: 14
margin: 10
text-align: center
```

The following keys can also be specified as an [expression](#expressions) and python functions:
`data:`, `row:`, `column:`, `value:` and subelements of `style` section.


### Sankey

- `data`: A DataFrame.
- `sort`: `True` or `False` if true data will get sorted while drawing sankey.
- `text`: Function to show text in sankey.
- `order`: Groups order.
- `color`: Color function based on which
- `groups`: Group column names from data.

Example:

```yaml
draw-sankey:
Sankey Rectangle:
sankey:
data: data['sankey_data']
sort: True
text:
function: "lambda g: g.sum().apply(lambda v: 'Node %s' % (v.name,), axis=1)"
order:
function: "lambda g: -g['D'].sum() / g['E'].sum()"
color:
function: "lambda g: _color.gradient(g['D'].sum() / g['E'].sum() * 2 - 1, _color.RdYlGn)"
groups: ['A', 'B', 'C']
stroke: '#ffffff'
```

The following keys can also be specified as an [expression](#expressions) and python functions:
`data:`, `size:`, `order:`, `text:`, `color`.

### Treemap

- `data`: A DataFrame.
- `keys`: Group column names as `list`.
- `values`: Aggregate function to apply on each group.
- `size`: Treemap's box size function.
- `sort`: Function to sort treemap's rectangles based on `sort` function.
- `color`: A DataFrame.
- `text`: Function to show text in treemap.

Example:

```yaml
draw-treemap:
Treemap Rectangle:
treemap:
data: data['treemap_data']
keys: ['A', 'B']
values: "{'C': 'sum', 'D': 'sum'}"
size:
function: "lambda v: v['C']"
sort:
function: "lambda v: v.sort_values(by=['C'], ascending=False)"
color:
function: "lambda v: _color.gradient(v['C'] / v['D'] - 1, _color.RdYlGn)"
text:
function: "lambda v: 'Num %d' % v['index']"
```

The following keys can also be specified as an [expression](#expressions) and python functions:
`data:`, `size:`, `keys:`, `values:`, `sort`, `color`, `text`.

# Development

To set up the development environment, clone this repo. Then run:

pip uninstall pptgen
pip install -e .

Create a branch for local development using `git checkout -b <branch>`.
Test your changes by running `make clean tests`.
Commit your branch and send a merge request.

## Release

When releasing a new version of pptgen:

1. Check [build errors](http://code.gramener.com/sanjay.yadav/pptgen/pipelines).
2. Run `make clean tests` on Python 2.7 and on 3.x
3. Update version number in `pptgen/release.json`
4. Push `dev` branch to the server. Ensure that there are no build errors.
5. Merge with master, create an annotated tag and push the code:

git checkout master
git merge dev
git tag -a v1.x.x # Annotate with a one-line summary of features
git push --follow-tags
git checkout dev # Switch back to dev

6. Release to PyPi

python setup.py sdist bdist_wheel --universal
twine upload dist/*


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pptgen-0.2.1.tar.gz (49.9 kB view details)

Uploaded Source

Built Distribution

pptgen-0.2.1-py2.py3-none-any.whl (52.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pptgen-0.2.1.tar.gz.

File metadata

  • Download URL: pptgen-0.2.1.tar.gz
  • Upload date:
  • Size: 49.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pptgen-0.2.1.tar.gz
Algorithm Hash digest
SHA256 0844c6635087ddceeafb23c4ec0f8297773545dde18d4487e28f61a7a453d4e1
MD5 1ddcc9a4f5f28b5e9a5d8e05eb4cf211
BLAKE2b-256 4a6b18d08d1cd9aadaab471c512d83a9ab7ceb3b9dc0f823d85284de31ef92d9

See more details on using hashes here.

File details

Details for the file pptgen-0.2.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for pptgen-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9d523ff9fec41224311ba1710c1617019664114e900c314f832d8b7e35d29fbe
MD5 5a982ce6a6c86e6396661f2ffbd56020
BLAKE2b-256 c172432b4d7c51122e840c3aa9e2dfc5c50e2409adadba9bf10e1b851767f945

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page