Skip to main content

Record sequential storage for deep learning.

Project description

Test DeepSource

Paddle-WebDataset, This is a Paddle version of WebDataset

Ref: https://github.com/webdataset/webdataset/tree/main

%matplotlib inline
import matplotlib.pyplot as plt
import paddle.nn
from random import randrange
import os
os.environ["WDS_VERBOSE_CACHE"] = "1"
os.environ["GOPEN_VERBOSE"] = "0"

The WebDataset Format

WebDataset format files are tar files, with two conventions:

  • within each tar file, files that belong together and make up a training sample share the same basename when stripped of all filename extensions
  • the shards of a tar file are numbered like something-000000.tar to something-012345.tar, usually specified using brace notation something-{000000..012345}.tar

WebDataset can read files from local disk or from any pipe, which allows it to access files using common cloud object stores. WebDataset can also read concatenated MsgPack and CBORs sources.

The WebDataset representation allows writing purely sequential I/O pipelines for large scale deep learning. This is important for achieving high I/O rates from local storage (3x-10x for local drives compared to random access) and for using object stores and cloud storage for training.

The WebDataset format represents images, movies, audio, etc. in their native file formats, making the creation of WebDataset format data as easy as just creating a tar archive. Because of the way data is aligned, WebDataset works well with block deduplication as well and aligns data on predictable boundaries.

Standard tools can be used for accessing and processing WebDataset-format files.

bucket = "https://storage.googleapis.com/webdataset/testdata/"
dataset = "publaynet-train-{000000..000009}.tar"

url = bucket + dataset
!curl -s {url} | tar tf - | sed 10q
PMC4991227_00003.json
PMC4991227_00003.png
PMC4537884_00002.json
PMC4537884_00002.png
PMC4323233_00003.json
PMC4323233_00003.png
PMC5429906_00004.json
PMC5429906_00004.png
PMC5592712_00002.json
PMC5592712_00002.png
tar: stdout: write error

Note that in these .tar files, we have pairs of .json and .png files; each such pair makes up a training sample.

PP-WebDataset Libraries

There are several libraries supporting the WebDataset format:

  • ppwebdataset for Python3 (includes the wids library), this repository
  • Webdataset.jl a Julia implementation
  • tarp, a Golang implementation and command line tool
  • Ray Data sources and sinks

The ppwebdataset library can be used with Paddle.

The ppwebdataset Library

The ppwebdataset library is an implementation of Paddle IterableDataset (or a mock implementation thereof if you aren't using Paddle). It implements as form of stream processing. Some of its features are:

  • large scale parallel data access through sharding
  • high performance disk I/O due to purely sequential reads
  • latency insensitive due to big fat pipes
  • no local storage required
  • instant startup for training jobs
  • only requires reading from file descriptors/network streams, no special APIs
  • its API encourages high performance I/O pipelines
  • scalable from tiny desktop datasets to petascale datasets
  • provides local caching if desired
  • requires no dataset metadata; any collection of shards can be read and used instantly

The main limitations people run into are related to the fact that IterableDataset is less commonly used in Paddle and some existing code may not support it as well, and that achieving an exactly balanced number of training samples across many compute nodes for a fixed epoch size is tricky; for multinode training, webdataset is usually used with shard resampling.

There are two interfaces, the concise "fluid" interface and a longer "pipeline" interface. We'll show examples using the fluid interface, which is usually what you want.

import ppwebdataset as wds
pil_dataset = wds.WebDataset(url).shuffle(1000).decode("pil").to_tuple("png", "json")

The resulting datasets are standard Paddle IterableDataset instances.

isinstance(pil_dataset, paddle.io.IterableDataset)
True
for image, json in pil_dataset:
    break
plt.imshow(image)
<matplotlib.image.AxesImage at 0x7f73806db970>

png

We can add onto the existing pipeline for augmentation and data preparation.

import paddle.vision.transforms as transforms
from PIL import Image

preproc = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    lambda x: 1-x,
])

def preprocess(sample):
    image, json = sample
    try:
        label = json["annotations"][0]["category_id"]
    except:
        label = 0
    return preproc(image), label

dataset = pil_dataset.map(preprocess)

for image, label in dataset:
    break
plt.imshow(image.numpy().transpose(1, 2, 0))
<matplotlib.image.AxesImage at 0x7f7375fc2230>

png

WebDataset is just an instance of a standard IterableDataset. It's a single-threaded way of iterating over a dataset. Since image decompression and data augmentation can be compute intensive, Paddle usually uses the DataLoader class to parallelize data loading and preprocessing. WebDataset is fully compatible with the standard DataLoader.

Here are a number of notebooks showing how to use WebDataset for image classification and LLM training:

The wds-notes notebook contains some additional documentation and information about the library.

The webdataset Pipeline API

The wds.WebDataset fluid interface is just a convenient shorthand for writing down pipelines. The underlying pipeline is an instance of the wds.DataPipeline class, and you can construct data pipelines explicitly, similar to the way you use nn.Sequential inside models.

dataset = wds.DataPipeline(
    wds.SimpleShardList(url),

    # at this point we have an iterator over all the shards
    wds.shuffle(100),

    # add wds.split_by_node here if you are using multiple nodes
    wds.split_by_worker,

    # at this point, we have an iterator over the shards assigned to each worker
    wds.tarfile_to_samples(),

    # this shuffles the samples in memory
    wds.shuffle(1000),

    # this decodes the images and json
    wds.decode("pil"),
    wds.to_tuple("png", "json"),
    wds.map(preprocess),
    wds.shuffle(1000),
    wds.batched(16)
)

batch = next(iter(dataset))
batch[0].shape, batch[1].shape
([16, 3, 224, 224], (16,))

The ppwids Library for Indexed WebDatasets

Installing the ppwebdataset library installs a second library called ppwids. This library provides fully indexed/random access to the same datasets that ppwebdataset accesses using iterators/streaming.

Like the ppebdataset library, ppwids is high scalable and provides efficient access to very large datasets. Being indexed, it is easily backwards compatible with existing data pipelines based on indexed dataset, including precise epochs for multinode training. The library comes with its own ChunkedSampler and DistributedChunkedSampler classes, which provided shuffling accross nodes while still preserving enough locality of reference for efficient training.

Internally, the library uses a mmap-based tar file reader implementation; this allows very fast access without precomputed indexes, and it also means that shard and the equivalet of "shuffle buffers" are shared in memory between workers on the same machine.

This additional power comes at some cost: the library requires a small metadata file that lists all the shards in a dataset and the number of samples contained in each, the library requires local storage for as many shards as there are I/O workers on a node, it uses shared memory and mmap, and the availability of indexing makes it easy to accidentally use inefficient access patterns.

Generally, the recommendation is to use webdataset for all data generation, data transformation, and training code, and to use ppwids only if you need fully random access to datasets (e.g., for browing or sparse sampling), need an indexed-based sampler, or are converting tricky legacy code.

import ppwids

train_url = "https://storage.googleapis.com/webdataset/fake-imagenet/imagenet-train.json"

dataset = ppwids.ShardListDataset(train_url)

sample = dataset[1900]

print(sample.keys())
print(sample[".txt"])
plt.imshow(sample[".jpg"])
dict_keys(['.cls', '.jpg', '.txt', '__key__', '__dataset__', '__index__', '__shard__', '__shardindex__'])
a high quality color photograph of a dog


https://storage.googleapis.com/webdataset/fake-ima base: https://storage.googleapis.com/webdataset/fake-imagenet name: imagenet-train nfiles: 1282 nbytes: 31242280960 samples: 128200 cache: /tmp/_wids_cache





<matplotlib.image.AxesImage at 0x7f7373669e70>

png

There are several examples of how to use ppwids in the examples directory.

Note that the APIs between webdataset and wids are not fully consistent:

  • ppwids keeps the extension's "." in the keys, while webdataset removes it (".txt" vs "txt")
  • ppwids doesn't have a fully fluid interface, and add_transformation just adds to a list of transformations
  • ppwebdataset currently can't read the ppwids JSON specifications

Installation and Documentation

$ pip install ppwebdataset

For the Github version:

$ pip install git+https://github.com/JunnYu/ppwebdataset.git

Here are some videos talking about WebDataset and large scale deep learning:

Dependencies

The WebDataset library only requires Paddle, NumPy, and a small library called braceexpand.

WebDataset loads a few additional libraries dynamically only when they are actually needed and only in the decoder:

  • PIL/Pillow for image decoding
  • paddle.vision for image decoding
  • msgpack for MessagePack decoding
  • the curl command line tool for accessing HTTP servers
  • the Google/Amazon/Azure command line tools for accessing cloud storage buckets

Loading of one of these libraries is triggered by configuring a decoder that attempts to decode content in the given format and encountering a file in that format during decoding. (Eventually, the paddle... dependencies will be refactored into those libraries.)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ppwebdataset-0.2.86.tar.gz (66.4 kB view details)

Uploaded Source

Built Distribution

ppwebdataset-0.2.86-py3-none-any.whl (74.5 kB view details)

Uploaded Python 3

File details

Details for the file ppwebdataset-0.2.86.tar.gz.

File metadata

  • Download URL: ppwebdataset-0.2.86.tar.gz
  • Upload date:
  • Size: 66.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for ppwebdataset-0.2.86.tar.gz
Algorithm Hash digest
SHA256 b033a49e6e46ced66a67d509cc52ebeef371144432bff7c22faf7ea92c8031c8
MD5 a6c4fac79c684c6f2b442b6e820eb873
BLAKE2b-256 d8a9acb880766eb869786ea38529a3f620cf0f48f0ad8a4c2515c37bf5d6dc83

See more details on using hashes here.

File details

Details for the file ppwebdataset-0.2.86-py3-none-any.whl.

File metadata

File hashes

Hashes for ppwebdataset-0.2.86-py3-none-any.whl
Algorithm Hash digest
SHA256 295bd55a8100bc3263509cd95baa96fa3ce6d6d758fa5aac7ca4522a80561eb2
MD5 ea3c2dadf25d6a78502eb9ba3c355a58
BLAKE2b-256 ee81f70981e1b75df1dff91a6e83efa1886e4f458c9810be318a3690691fa80d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page