Skip to main content

A synthetic pandas query generation tool

Project description

Pandas Query Generator 🐼

Pandas Query Generator (pqg) is a tool designed to help users generate synthetic pandas queries for training machine learning models that estimate query execution costs or predict cardinality.

The binary is called pqg and has only been tested on a unix-based system.

Installation

You can install the query generator using pip, the Python package manager:

pip install pqg

Usage

Below is the standard output of pqg --help, which elaborates on the various command-line arguments the tool accepts:

usage: pqg [--disable-multi-processing] [--filter] [--groupby-aggregation-probability] [--max-groupby-columns] [--max-merges] [--max-projection-columns] [--max-selection-conditions] [--multi-line] --num-queries [--output-file] [--projection-probability] --schema [--selection-probability] [--sort] [--verbose]

Pandas Query Generator CLI

options:
  -h --help Show this help message and exit
  --disable-multi-processing Generate and execute queries in a consecutive fashion (default: False)
  --filter Filter generated queries by specific criteria
  --groupby-aggregation-probability Probability of including groupby aggregation operations (default: 0.5)
  --max-groupby-columns Maximum number of columns in group by operations (default: 5)
  --max-merges Maximum number of table merges allowed (default: 2)
  --max-projection-columns Maximum number of columns to project (default: 5)
  --max-selection-conditions Maximum number of conditions in selection operations (default: 5)
  --multi-line Format queries on multiple lines (default: False)
  --num-queries num_queries The number of queries to generate
  --output-file The name of the file to write the results to (default: queries.txt)
  --projection-probability Probability of including projection operations (default: 0.5)
  --schema schema Path to the relational schema JSON file
  --selection-probability Probability of including selection operations (default: 0.5)
  --sort Whether or not to sort the queries by complexity (default: False)
  --verbose Print extra generation information and statistics (default: False)

The required options, as shown, are --num-queries and --schema. The --num-queries option simply instructs the program to generate a certain amount of queries.

The --schema option is a pointer to a JSON file path that describes meta-information about the data we're generating queries for.

A sample schema looks like this:

{
  "entities": {
    "customer": {
      "primary_key": "C_CUSTKEY",
      "properties": {
        "C_CUSTKEY": { "type": "int", "min": 1, "max": 1000 },
        "C_NAME": { "type": "string", "starting_character": ["A", "B", "C"] },
        "C_STATUS": { "type": "enum", "values": ["active", "inactive"] }
      },
      "foreign_keys": {}
    },
    "order": {
      "primary_key": "O_ORDERKEY",
      "properties": {
        "O_ORDERKEY": { "type": "int", "min": 1, "max": 5000 },
        "O_CUSTKEY": { "type": "int", "min": 1, "max": 1000 },
        "O_TOTALPRICE": { "type": "float", "min": 10.0, "max": 1000.0 },
        "O_ORDERSTATUS": { "type": "enum", "values": ["pending", "completed", "cancelled"] }
      },
      "foreign_keys": {
        "O_CUSTKEY": ["C_CUSTKEY", "customer"]
      }
    }
  }
}

This file can be found in /examples/customer/schema.json, generate a few queries from this schema with pqg --num-queries 100 --schema examples/customer/schema.json --verbose.

Schemas for these files can be found in their respective directories within /examples.

How does it work?

Check out the paper in the /docs folder for more information!

Prior Art

This version of the Pandas Query Generator is based off of the thorough research work of previous students of COMP 400 at McGill University, namely Edge Satir, Hongxin Huo and Dailun Li.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pqg-0.2.4.tar.gz (22.9 kB view details)

Uploaded Source

Built Distribution

pqg-0.2.4-py3-none-any.whl (24.6 kB view details)

Uploaded Python 3

File details

Details for the file pqg-0.2.4.tar.gz.

File metadata

  • Download URL: pqg-0.2.4.tar.gz
  • Upload date:
  • Size: 22.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.4.30

File hashes

Hashes for pqg-0.2.4.tar.gz
Algorithm Hash digest
SHA256 4a6c61b5848f7839d51f851ba8a4dbf32ef3601e082a41b04516ecb3dafe2abf
MD5 7ef47b3340fd0e6ca1f316487fe4da3c
BLAKE2b-256 feffd820402577eea4c65b0ff09e8e1f3d2a9e2dba4cf9d13f371429f7fcd1b3

See more details on using hashes here.

File details

Details for the file pqg-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: pqg-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 24.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.4.30

File hashes

Hashes for pqg-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 b76b96b02ab6deebbf080e3bb6d05c51690895f9cdd3e68735c3eff0e4ae2fe7
MD5 ee5d38db57afb51feb5f0746052ddc47
BLAKE2b-256 ef6883badfb171dbef51da52bd62f0a874d1b7aebbc55991ca4414cfbeed9316

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page