A synthetic pandas query generation tool
Project description
Pandas Query Generator 🐼
Pandas Query Generator (pqg) is a tool designed to help users generate synthetic pandas queries for training machine learning models that estimate query execution costs or predict cardinality.
The binary is called pqg and has only been tested on a unix-based system.
Installation
You can install the query generator using pip, the Python package manager:
pip install pqg
Alternatively, you can use the local web playground:
cd www && bun install && bunx --bun vite
n.b. This command will require you to have bun installed on your machine.
This will spin up a development server at localhost:5173
where you can interact with the playground.
You can upload your schemas, tweak query parameters and generate queries.
Usage
The query generator exposes both a command-line tool and library interface.
CLI
Below is the standard output of pqg --help
, which elaborates on the various
command-line arguments the tool accepts:
usage: pqg [--disable-multi-processing] [--filter] [--groupby-aggregation-probability] [--max-groupby-columns] [--max-merges] [--max-projection-columns] [--max-selection-conditions] [--multi-line] --num-queries [--output-file] [--projection-probability] --schema [--selection-probability] [--sort] [--verbose]
Pandas Query Generator CLI
options:
-h --help Show this help message and exit
--disable-multi-processing Generate and execute queries in a consecutive fashion (default: False)
--filter Filter generated queries by specific criteria
--groupby-aggregation-probability Probability of including groupby aggregation operations (default: 0.5)
--max-groupby-columns Maximum number of columns in group by operations (default: 5)
--max-merges Maximum number of table merges allowed (default: 2)
--max-projection-columns Maximum number of columns to project (default: 5)
--max-selection-conditions Maximum number of conditions in selection operations (default: 5)
--multi-line Format queries on multiple lines (default: False)
--num-queries num_queries The number of queries to generate
--output-file The name of the file to write the results to (default: queries.txt)
--projection-probability Probability of including projection operations (default: 0.5)
--schema schema Path to the relational schema JSON file
--selection-probability Probability of including selection operations (default: 0.5)
--sort Whether or not to sort the queries by complexity (default: False)
--verbose Print extra generation information and statistics (default: False)
The required options, as shown, are --num-queries
and --schema
. The
--num-queries
option simply instructs the program to generate a certain amount
of queries.
The --schema
option is a pointer to a JSON file path that describes
meta-information about the data we're generating queries for.
A sample schema looks like this:
{
"entities": {
"customer": {
"primary_key": "C_CUSTKEY",
"properties": {
"C_CUSTKEY": { "type": "int", "min": 1, "max": 1000 },
"C_NAME": { "type": "string", "starting_character": ["A", "B", "C"] },
"C_STATUS": { "type": "enum", "values": ["active", "inactive"] }
},
"foreign_keys": {}
},
"order": {
"primary_key": "O_ORDERKEY",
"properties": {
"O_ORDERKEY": { "type": "int", "min": 1, "max": 5000 },
"O_CUSTKEY": { "type": "int", "min": 1, "max": 1000 },
"O_TOTALPRICE": { "type": "float", "min": 10.0, "max": 1000.0 },
"O_ORDERSTATUS": { "type": "enum", "values": ["pending", "completed", "cancelled"] }
},
"foreign_keys": {
"O_CUSTKEY": ["C_CUSTKEY", "customer"]
}
}
}
}
This file can be found in /examples/customer/schema.json
, generate a few
queries from this schema with pqg --num-queries 100 --schema examples/customer/schema.json --verbose
.
Schemas for these files can be found in their respective directories within
/examples
.
Library
We expose various structures that make it easy to generate queries fast:
import json
from pqg import Generator, Schema, QueryStructure, QueryPool,
QueryFilter
# Assumes `schema.json` exists and conforms to the schema format
schema = Schema.from_file('schema.json')
query_structure = QueryStructure(
groupby_aggregation_probability=0.5,
max_groupby_columns=4,
max_merges=10,
max_projection_columns=5,
max_selection_conditions=10,
projection_probability=0.5,
selection_probability=0.5
)
generator = Generator(schema, query_structure)
# Generate 1000 queries
query_pool = generator.generate(1000)
# Filter out queries with non-empty result sets
query_pool.filter(QueryFilter.NON_EMPTY)
# Sort queries by complexity
query_pool.sort()
for query in query_pool:
print(query)
Comprehensive API documentation is generated using the sphinx
Python package.
You can generate the documentation using the following command in the project root:
cd docs && uv run sphinx-build -M html source build
...then serve it with:
python3 -m http.server 8000 --directory docs/build/html
This will serve the documentation files at http://localhost:8000
. Open it up
in your preferred browser see the generated site.
How does it work?
Check out the paper in the /docs
folder for more information!
Prior Art
This version of the Pandas Query Generator is based off of the thorough research work of previous students of COMP 400 at McGill University, namely Edge Satir, Hongxin Huo and Dailun Li.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pqg-0.3.0.tar.gz
.
File metadata
- Download URL: pqg-0.3.0.tar.gz
- Upload date:
- Size: 23.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: uv/0.5.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74f34b1a1b5302e7b870128b3047586d039231663642e1b703a39e62bb406626 |
|
MD5 | f44bf5d661f23d0b8112d70a8e42d069 |
|
BLAKE2b-256 | a373fe926432e3ae3638ee4853b42e968dca0476c4164344e59c24a7130d6529 |
File details
Details for the file pqg-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: pqg-0.3.0-py3-none-any.whl
- Upload date:
- Size: 24.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: uv/0.5.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e31c7fafa9b4899d1db5bc84758ee489dde06b34e35df399903cba67c84c809 |
|
MD5 | fee3f41b98de5dd3f18fa9aca858992f |
|
BLAKE2b-256 | 36da69a5d071e25f3f59056d5efb3cc6e1798d679b3ffda524422414e73210af |