Skip to main content

A power quality processing library for calculating parameters from waveform data

Project description

pqopen-lib

pqopen-lib is a Python library designed for advanced power system and power quality analysis. It provides tools for creating and analyzing power systems, detecting events, managing data storage, and more. Built with modularity and flexibility in mind, it supports single-phase to multi-phase systems and complies with IEC standards for power quality analysis.

Features

  • Power System Modeling: Create single-phase or multi-phase power systems with detailed phase configuration.
  • Power Quality Analysis: Perform harmonic, fluctuation, and power quality calculations in compliance with standards like IEC 61000-4-7 and IEC 61000-4-30.
  • Event Detection: Detect and classify events such as overvoltage, undervoltage, and other anomalies in real-time.
  • Data Storage and Export: Manage time-series and aggregated data with support for various storage backends like CSV, and MQTT
  • Zero-Crossing Detection: Enable accurate cycle-by-cycle processing for fundamental frequency synchronization.
  • High Performance: Efficiently handle high-resolution waveform data and sampling rates.

Installation

Ensure you have Python 3.11 or later installed. To install pqopen-lib along with its dependencies:

pip install pqopen-lib

Documentation

Detailed documentation is available for each module and function. Key modules include:

  • powersystem: Define and manage power systems and phases.
  • powerquality: Perform power quality and harmonic analyses.
  • eventdetector: Detect and analyze power events.
  • storagecontroller: Manage and export time-series and aggregated data.
  • zcd: Handle zero-crossing detection for waveform synchronization.

Use Cases

  • Education: Learn to understand how power and power quality analysis works
  • Power Quality Monitoring: Ensure compliance with power quality standards.
  • Industrial Power Systems: Monitor and analyze complex, multi-phase systems.
  • Research and Development: Use as a reference platform for power quality testing

Getting Started

Here’s a quick example to get you started:

Create a Simple Power System

import numpy as np

from pqopen.powersystem import PowerSystem
from daqopen.channelbuffer import AcqBuffer

samplerate = 10_000 # Hz
signal_duration = 1.0 # seconds

voltage_magnitude = 230.0 # Volt
current_magnitude = 10.0 # Ampere

frequency = 50.0 # Hz

# Create time signal
t = np.linspace(0,int(signal_duration),int(samplerate*signal_duration),endpoint=False)
# Create voltage signal
u = voltage_magnitude*np.sqrt(2)*np.sin(2*np.pi*t*frequency)
# Create current signal
i = current_magnitude*np.sqrt(2)*np.sin(2*np.pi*t*frequency)

# Create Channel/Buffer for input waveform
ch_t = AcqBuffer()
ch_u = AcqBuffer()
ch_i = AcqBuffer()

# Create minimal power system
my_power_system = PowerSystem(zcd_channel=ch_u,
                              input_samplerate=samplerate)

# Create power phase and append to power system
my_power_system.add_phase(u_channel=ch_u, i_channel=ch_i)

# Add data to channels (we can apply all data at once because the 
# buffer is big enough to hold the test dataset)
ch_t.put_data(t)
ch_u.put_data(u)
ch_i.put_data(i)

# Perform calculation
my_power_system.process()

# View the results
for ch_name, ch_buffer in my_power_system.output_channels.items():
    print(f"{ch_name:<14} {ch_buffer.last_sample_value:.2f} {ch_buffer.unit}")

Contributing

Contributions are welcome! Please open issues for bugs or feature requests and submit pull requests for improvements.

  1. Fork the repository.
  2. Create your feature branch (git checkout -b feature/my-feature).
  3. Commit your changes (git commit -m 'Add my feature').
  4. Push to the branch (git push origin feature/my-feature).
  5. Open a pull request.

License

This project is licensed under the MIT License. See the LICENSE file for details.


For any questions or support, feel free to reach out via the issues page or contact me michael@daqopen.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pqopen_lib-0.7.7.tar.gz (38.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pqopen_lib-0.7.7-py3-none-any.whl (28.6 kB view details)

Uploaded Python 3

File details

Details for the file pqopen_lib-0.7.7.tar.gz.

File metadata

  • Download URL: pqopen_lib-0.7.7.tar.gz
  • Upload date:
  • Size: 38.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.5

File hashes

Hashes for pqopen_lib-0.7.7.tar.gz
Algorithm Hash digest
SHA256 43753bb16a1c2ab6d4633ab97fefe909bbfeebac5e3f9c06c466c1ea4bdb3194
MD5 70c93dbc67f8496056274cb3f83aadb1
BLAKE2b-256 d0a6baacc30566ce223f287732e10794bf6ac02e6866d00adc7ff4e1fb7722e8

See more details on using hashes here.

File details

Details for the file pqopen_lib-0.7.7-py3-none-any.whl.

File metadata

  • Download URL: pqopen_lib-0.7.7-py3-none-any.whl
  • Upload date:
  • Size: 28.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.13.5

File hashes

Hashes for pqopen_lib-0.7.7-py3-none-any.whl
Algorithm Hash digest
SHA256 f67a180bbe7fd4c88d50d578fdac77de511d4484b5d5e46764a6708fb2621db5
MD5 d07703e4c04ea851570adba9ec63f2e4
BLAKE2b-256 356208231bd587b44f318e3fc3ef4d84b31bcd2a9c292b197786f3c2d57024cd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page