Python library for implementing post-randomisation method (PRAM) for disclosure control in synthetic data
Project description
pram
Python implementation of post-randomisation method for disclosure control
Call the pram() method with a Pandas dataframe to apply post-randomisation perturbation to the dataset using a generated transition matrix.
You can specify the minimum diagonal value (i.e. the minimum probability that a data point remains unchanged) and an alpha value to modify the likelihood of perturbation (from zero to one).
By default all columns are modified, and there is no stratification. However you can specify the columns to process as a list, and also specify a column to use for stratification. If stratification is used, the column used for stratification is not modified.
The behaviour is largely the same as that in the "sdcMicro" R package.
Command-line usage
You can also call Pram from the command line, supplying a CSV file input and path to output the perturbed dataset as CSV.
From the command line you can also use the -f switch to print a table of the frequencies of categories in the original and changed versions of the dataset.
Example:
pram mydata.csv output.csv 0.8 0.5 -f
This will load the data in mydata.csv, run PRAM with m=0.8 and a=0.5, save the output in output.csv, and print a frequency table to the console.
Examples
Command-line use with stratification
Run PRAM stratified by gender on region and education, and output the frequency table
pram mydata.csv output.csv 0.8 0.5 region,education gender -f
Result:
Column Original Output
female gender 0.67 0.67
male gender 0.33 0.33
rural region 0.67 0.71
urban region 0.33 0.29
lower education 0.67 0.62
higher education 0.33 0.38
Note that as gender was used to stratify the data, it didn't change.
Simple use within python
from pram import pram
persons = [
{'gender': 'female', 'region': 'rural', 'education': 'higher', 'age': 27},
{'gender': 'female', 'region': 'rural', 'education': 'lower', 'age': 35},
{'gender': 'male', 'region': 'rural', 'education': 'lower', 'age': 26},
{'gender': 'male', 'region': 'rural', 'education': 'lower', 'age': 22},
{'gender': 'female', 'region': 'urban', 'education': 'higher', 'age': 41},
{'gender': 'female', 'region': 'urban', 'education': 'lower', 'age': 54},
{'gender': 'female', 'region': 'rural', 'education': 'higher', 'age': 38},
{'gender': 'female', 'region': 'rural', 'education': 'lower', 'age': 44},
{'gender': 'male', 'region': 'rural', 'education': 'lower', 'age': 18},
{'gender': 'male', 'region': 'rural', 'education': 'lower', 'age': 52},
{'gender': 'female', 'region': 'urban', 'education': 'higher', 'age': 44},
{'gender': 'female', 'region': 'urban', 'education': 'lower', 'age': 35},
{'gender': 'female', 'region': 'rural', 'education': 'higher', 'age': 33},
{'gender': 'female', 'region': 'rural', 'education': 'lower', 'age': 31},
{'gender': 'male', 'region': 'rural', 'education': 'lower', 'age': 40},
{'gender': 'male', 'region': 'rural', 'education': 'lower', 'age': 23},
{'gender': 'female', 'region': 'urban', 'education': 'higher', 'age': 68},
{'gender': 'female', 'region': 'urban', 'education': 'lower', 'age': 19},
{'gender': 'female', 'region': 'rural', 'education': 'higher', 'age': 27},
{'gender': 'female', 'region': 'rural', 'education': 'lower', 'age': 24},
{'gender': 'male', 'region': 'rural', 'education': 'lower', 'age': 48},
{'gender': 'male', 'region': 'rural', 'education': 'lower', 'age': 38},
{'gender': 'female', 'region': 'urban', 'education': 'higher', 'age': 30},
{'gender': 'female', 'region': 'urban', 'education': 'lower', 'age': 27}
]
df = pd.DataFrame(persons)
print(pram(df))
The output of the example might be:
gender region education age
0 female rural lower 27
1 female urban lower 35
2 male rural higher 26
3 male rural lower 40
4 female rural higher 41
5 female urban lower 54
6 male rural higher 38
7 female rural lower 44
8 male urban lower 18
9 male urban lower 27
10 female urban lower 44
11 female urban lower 33
12 female urban lower 27
13 male rural lower 31
14 female urban higher 40
15 male urban higher 23
16 female rural higher 68
17 female urban lower 19
18 female urban lower 48
19 female rural lower 24
20 male rural lower 38
21 male rural lower 38
22 male urban lower 30
23 female rural lower 41
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pram-0.1.9.tar.gz
.
File metadata
- Download URL: pram-0.1.9.tar.gz
- Upload date:
- Size: 6.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5f2e1eeb780f74ac218e258c685eae334c131ed8c473c76ab65ffbc8b0c4c53b |
|
MD5 | cde4db97f795da6fdf359457a28a864f |
|
BLAKE2b-256 | 8696e308020b65521a89dfb71ecd6ffcf27b13996d290471eef5331f3f43bf84 |
File details
Details for the file pram-0.1.9-py2.py3-none-any.whl
.
File metadata
- Download URL: pram-0.1.9-py2.py3-none-any.whl
- Upload date:
- Size: 6.3 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d735a2e6ec0136649d3b672fb82f9d2a9692a937a6b0612f6cb9b8cce8f3bb82 |
|
MD5 | b1ce6fa51a68b1a9aabc253688966a78 |
|
BLAKE2b-256 | c42714abd244067f151fa4cf94990f23181f1b74ea6765ceb3a71d2a0ffef887 |