Skip to main content

This package directly gives you output performance on 12 different algorithms

Project description

Pratik_model

  • The best thing about this package is that you do not have to train and predict every classification or regression algorithm to check performance.
  • This package directly gives you output performance on 13 different algorithms.

How to use it - For Classification x= Independent variables y= Dependent variables

  • From Pratik_model import smart_classifier
  • model = smart_classifier(x,y)
  • model.accuracy_score()
  • model.classification_report()
  • model.confusion_matrix()
  • model.cross_validation()
  • model.mean_absolute_error()
  • model.precision_score()
  • model.recall_score()
  • model.mean_absolute_error()
  • model.mean_absolute_error()
  • model.mean_squared_error()
  • model.cross_validation()

For Regression -

  • From Pratik_model import smart_regressor
  • model=smart_regressor(x,y)
  • model.r2_score()
  • model.mean_absolute_error()
  • model.mean_absolute_error()
  • model.mean_squared_error()
  • model.cross_validation()
  • model.overfitting()

Check Pratik_Model_Package.ipynb file on Github for practical code.

Pratik_model for Classification: It will check the performance on this Classification models:

  • Passive Aggressive Classifier
  • Decision Tree Classifier
  • Random Forest Classifier
  • Extra Trees Classifier
  • Logistic Regression
  • Ridge Classifier
  • K Neighbors Classifier
  • Support Vector Classification
  • Naive Bayes Classifier
  • LGBM Classifier
  • CatBoost Classifier
  • XGB Classifier

And for classification problems Pratik_model can give the output of:

  • Accuracy Score.
  • Classification Report
  • Confusion Matrix
  • Cross validation (Cross validation score)
  • Mean Absolute Error
  • Mean Squared Error
  • Overfitting (will give accuracy of training and testing data.)
  • Precision Score
  • Recall Score

Pratik_model for Regression: Similarly, It will check performance on this Regression model:

  • Passive Aggressive Regressor
  • Gradient Boosting Regressor
  • Decision Tree Regressor
  • Random Forest Regressor
  • Extra Trees Regressor
  • Lasso Regression
  • K Neighbors Regressor
  • Linear Regression
  • Support Vector Regression
  • LGBM Regressor
  • CatBoost Regressor
  • XGB Regressor

And for Regression problem Pratik_model can give an output of:

  • R2 Score.
  • Cross validation (Cross validation score)
  • Mean Absolute Error
  • Mean Squared Error
  • Overfitting (will give accuracy of training and testing data.)

First Release 0.0.7 (29/3/2022)

Thank You!!.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Pratik_model-0.1.6.tar.gz (16.2 kB view details)

Uploaded Source

Built Distribution

Pratik_model-0.1.6-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file Pratik_model-0.1.6.tar.gz.

File metadata

  • Download URL: Pratik_model-0.1.6.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for Pratik_model-0.1.6.tar.gz
Algorithm Hash digest
SHA256 deb92930b3166a907d49390692867b01fc7fc583acd4ba15b50da22eec15b513
MD5 301329e6cb2e558b3994d2d81c5243de
BLAKE2b-256 307fcbfa93aee4725106505a2b6aadafb0e63b8fb6449d667152af98974c2d07

See more details on using hashes here.

File details

Details for the file Pratik_model-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: Pratik_model-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 16.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for Pratik_model-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 fb625fcbdf08716cc80ce69f315f6c4cb1f1e569c5ba195fb1735df0f5c4dea1
MD5 dcf81447e4a4bad8de8bbcb3a625a773
BLAKE2b-256 79d281b6f46333302814497e66abe0b7407375efce19ece7b859640468e69033

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page