Kit de ferramentas para processos básicos de Processamento de Linguagem Natural.
Project description
Ferramentas básicas para Processamento de Linguagem Natural
Este pacote é um kit de ferramentas (variadas funções) para execução de processos básicos relacionados as etapas iniciais de processamento de linguagem natural.
Funcionalidades
- Limpeza de texto;
- Análise de texto;
- Pré-processamento de texto para posterior inserção em modelos de treinamento de linguagem natural;
- Fácil integração com outros programas Python por meio da importação do(s) módulo(s) ou função desejada.
Instalação
A instalação deste pacote se dá por meio do comando "pip install"
pip install pre-processing-text-basic-tools-br
Uso/Exemplos
Removendo caractéres especiais
from pre_processing_text_basic_tools_br import removerCaracteresEspeciais
texto = "Este é um $ exemplo, de texto? com caractéres# especiai.s. Quero limpá-lo!!!"
texto_limpo = removerCaracteresEspeciais(texto)
print(texto_limpo)
>>>Este é um exemplo de texto com caractéres especiais Quero limpá-lo
É importante destacar que as funções foram pensadas para aplicações para a língua portuguesa. Com isso, palavras com hífen, como sexta-feira, não tem seu caracter especial "-" removido por padrão, mas pode-se escolher pela remoção dos hífens de tais palavras usando o parâmetro remover_hifen_de_palavras, passando para True.
texto_limpo = removerCaracteresEspeciais(texto,remover_hifen_de_palavras=True)
print(texto_limpo)
>>>Este é um exemplo de texto com caractéres especiais Quero limpálo
Formatação e padronização total do texto
from pre_processing_text_basic_tools_br import formatacaoTotalDeTexto
texto = "Este é um $ exemplo, de texto? que/ que.ro# formatar e&*. padronizar!?"
texto_formatado = formatacaoTotalDeTexto(texto=texto,
padronizar_texto_para_minuscula=True,
remover_caracteres_especiais=True,
remover_caracteres_mais_que_especiais=True,
remover_espacos_em_branco_em_excesso=True,
padronizar_com_unidecode=True)
print(texto_formatado)
>>>este e um exemplo de texto que quero formatar e padronizar
Padronização de elementos diversos
from pre_processing_text_basic_tools_br import formatacaoTotalDeTexto
texto = '''Se eu tiver um texto com e-mail tipo esteehumemail@gmail.com ou
noreply@hotmail.com ou até mesmo emaildeteste@yahoo.com.br.
Além disso terei também vários telefones do tipo +55 48 911223344 ou
4890011-2233 e por que não um fixo do tipo 48 0011-2233?
Pode-se ter também datas como 12/12/2024 ou 2023-06-12 em variados tipos
tipo 1/2/24
E se o texto tiver muito dinheiro envolvido? Falamos de R$ 200.000,00 ou
R$200,00 ou até com
a formatação errada tipo R$ 2500!
Além disso podemos simplesmente padronizar números como 123123 ou 24 ou
129381233 ou até mesmo 1.200.234!'''
texto_formatado = formatacaoTotalDeTexto(texto=texto,
padronizar_com_unidecode=True,
padronizar_datas=True,
padrao_data='_data_',
padronizar_dinheiros=True,
padrao_dinheiro='$',
padronizar_emails=True,
padrao_email='_email_',
padronizar_telefone_celular=True,
padrao_tel='_tel_',
padronizar_numeros=True,
padrao_numero='0',
padronizar_texto_para_minuscula=True)
print(texto_formatado)
>>>se eu tiver um texto com e-mail tipo _email_ ou _email_ ou ate mesmo _email_
alem disso terei tambem varios telefones do tipo _tel_ ou _tel_ e por que nao um fixo do tipo _tel_
pode-se ter tambem datas como _data_ ou _data_ em variados tipos tipo _data_
e se o texto tiver muito dinheiro envolvido falamos de $ ou $ ou ate com
a formatacao errada tipo $
alem disso podemos simplesmente padronizar numeros como 0 ou 0 ou 0 ou ate mesmo 0
Tokenização de textos
Aplicação 1
from pre_processing_text_basic_tools_br.main import tokenizarTexto
texto = '''Este é mais um texto de exemplo para a tokenização!!! Vamos usar caractéres,
especiais também @igorc.s e segue lá?!'''
tokenizacao = tokenizarTexto(texto)
print(tokenizacao)
>>>['este', 'é', 'mais', 'um', 'texto', 'de', 'exemplo', 'para', 'a', 'tokenização', 'vamos', 'usar', 'caractéres', 'especiais', 'também', 'igorcs', 'e', 'segue', 'lá']
Aplicação 2
from pre_processing_text_basic_tools_br import tokenizarTexto
texto = '''Este é mais um texto de exemplo para a tokenização!!! Vamos usar caractéres,
especiais também @igorc.s e segue lá?!'''
tokenizacao = tokenizarTexto(texto,remover_palavras_de_escape=True)
print(tokenizacao)
>>>['este', 'é', 'mais', 'um', 'texto', 'exemplo', 'para', 'tokenização', 'vamos', 'usar', 'caractéres', 'especiais', 'também', 'igorcs', 'segue', 'lá']
Aplicação 3
from pre_processing_text_basic_tools_br import tokenizarTexto
from pre_processing_text_basic_tools_br import lista_com_palavras_de_escape_padrao_tokenizacao
texto = '''Este é mais um texto de exemplo para a tokenização!!! Vamos usar caractéres,
especiais também @igorc.s e segue lá?!'''
lista_stop_words_personalizada = lista_com_palavras_de_escape_padrao_tokenizacao + ['este','mais','um','para','também','lá']
tokenizacao = tokenizarTexto(texto,remover_palavras_de_escape=True,lista_com_palavras_de_escape=lista_stop_words_personalizada)
print(tokenizacao)
>>>['este', 'é', 'texto', 'exemplo', 'tokenização', 'vamos', 'usar', 'caractéres', 'especiais', 'igorcs', 'segue']
Com mais complexidade (clique para expandir)
Aplicação 4
from pre_processing_text_basic_tools_br import tokenizarTexto
from pre_processing_text_basic_tools_br import lista_com_palavras_de_escape_padrao_tokenizacao
texto = '''Este é mais um texto de exemplo para a tokenização!!! Vamos usar caractéres,
especiais também @igorc.s e segue lá?!'''
texto = formatacaoTotalDeTexto(texto,padronizar_forma_canonica=True)
tokenizacao = tokenizarTexto(texto=texto,
remover_palavras_de_escape=True,
lista_com_palavras_de_escape=lista_stop_words_personalizada,
desconsiderar_acentuacao_nas_palavras_de_escape=True)
print(tokenizacao)
>>>['texto', 'exemplo', 'tokenizacao', 'vamos', 'usar', 'caracteres', 'especiais', 'igorcs', 'segue']
Autores
Usado por
Esse projeto é usado na etapa de pré-processamento de textos no projeto WOKE do Grupo de Estudos e Pesquisa em IA e História da UFSC:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for pre_processing_text_basic_tools_br-0.3.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0933c678086d5f46a77fcc9d0b7f0c54e5efb6384044a522a6fb953d3e71860e |
|
MD5 | f7abd470f0c724e35188867a5b22f366 |
|
BLAKE2b-256 | 0aab787a55d4eba5604b053ffb058451905fdfa4a97f5612fa36c757241ac00f |
Hashes for pre_processing_text_basic_tools_br-0.3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1b45061524074fa48cd14a280552f840dacfd5fa3eb882c008a7f9bc02abe51 |
|
MD5 | e7c009e28f9b8cb3ca3d9b9835ac6315 |
|
BLAKE2b-256 | 880d20421d9fe63c3d0fc32ffafa636fb28b8ef2dab1ff19baf3a9ded9be5053 |