Skip to main content

Pre processing the Data Frame

Project description

#Preprocessing

This is one basic project , which pre processes the data frame , removing null values and performs standard scaling.

#Main Features

Removes Null values from DataFrame and do standard Scaling of data

#Installation

pip install preJProcess

#Usage

e.g, p = preProcess(df) df ==> dataFrame p.preProcessData() p.scaling()

#Sample Code from sklearn.preprocessing import StandardScaler

class preProcess(): def init(self,df): self.df = df

def preProcessData(self):
    print("Null values present in your data : ", self.df.isna().sum())
    print("Preprocessing the data, removing Null Values....")
    columns = self.df.columns
    scalar = StandardScaler()
    for col in columns:
        print("Processing : " , col)
        self.df[col].fillna(self.df[col].mean(),inplace=True)
    return self.df
.....

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

preJPProcess-0.0.1.tar.gz (3.4 kB view details)

Uploaded Source

Built Distribution

preJPProcess-0.0.1-py3-none-any.whl (3.8 kB view details)

Uploaded Python 3

File details

Details for the file preJPProcess-0.0.1.tar.gz.

File metadata

  • Download URL: preJPProcess-0.0.1.tar.gz
  • Upload date:
  • Size: 3.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for preJPProcess-0.0.1.tar.gz
Algorithm Hash digest
SHA256 9a55069402150bd93b323979dbcf32c96b44efb31b6c7a5ac1526575c177fa71
MD5 1b00d043d75b6f4e1ed7b8415f564c2a
BLAKE2b-256 3a59394851f9815a2570631ba4d1affa88350a63b7c8f63631841a1e3aaa3f0f

See more details on using hashes here.

File details

Details for the file preJPProcess-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: preJPProcess-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 3.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for preJPProcess-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d3b0250371d94cba57c587b1589ca25bbf00bdc3774a5d725009f24fb50be5c0
MD5 4279f77e9aec0a6603419cc203b8aec8
BLAKE2b-256 3efdb98a6843fb3f7189b92780c0e900aaf8c2f12dad1cb2c9b3b885434ac960

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page