Skip to main content

The home of Schur Hierarchical Portfolios: an aesthetically pleasing version of Hierarchical Risk Parity

Project description

precise docs tests tests-scipy-173 tests-sans-ppo License: MIT

Contents:

  1. A collection of online (incremental) covariance forecasting and portfolio construction functions. See docs.

  2. "Schur Complementary" portfolio construction, a new approach that leans on connection between top-down (hierarchical) and bottom-up (optimization) portfolio construction revealed by block matrix inversion. See my posts on the methodology and its role in the hijacking of the M6 contest.

  3. A small compendium of portfolio theory papers tilted towards my interests. See literature.

One observes that tools for portfolio construction might also be useful in optimizing a portfolio of models.



Usage

See the docs, but briefly:

Covariance estimation

Here y is a vector:

from precise.skaters.covariance.ewapm import ewa_pm_emp_scov_r005_n100 as f 
s = {}
for y in ys:
    x, x_cov, s = f(s=s, y=y)

This package contains lots of different "f"s. There is a LISTING_OF_COV_SKATERS with links to the code. See the covariance documentation.

Portfolio weights

Here y is a vector:

    from precise.skaters.managers.schurmanagers import schur_weak_pm_t0_d0_r025_n50_g100_long_manager as mgr
    s = {}
    for y in ys:
        w, s = mgr(s=s, y=y)

This package contains lots of "mgr"'s. There is a LISTING_OF_MANAGERS with links to respective code. See the manager documentation.

Install

pip install precise 

or for latest:

pip install git+https://github.com/microprediction/precise.git

Trouble? It probably isn't with precise per se.

pip install --upgrade pip
pip install --upgrade setuptools 
pip install --upgrade wheel
pip install --upgrade ecos   # <--- Try conda install ecos if this fails
pip install --upgrade osqp   # <-- Can be tricky on some systems see https://github.com/cvxpy/cvxpy/issues/1190#issuecomment-994613793
pip install --upgrade pyportfolioopt # <--- Skip if you don't plan to use it
pip install --upgrade riskparityportfolio
pip install --upgrade scipy
pip install --upgrade precise 

Miscellaneous

  • Here is some related, and potentially related, literature.
  • This is a piece of the microprediction project aimed at creating millions of autonomous critters to distribute AI at low cost, should you ever care to cite the same. The uses include mixtures of experts models for time-series analysis, buried in timemachines somewhere.
  • If you just want univariate calculations, and don't want numpy as a dependency, there is momentum. However if you want univariate forecasts of the variance of something, as distinct from mere online calculations of the same, you might be better served by the timemachines package. In particular I would suggest checking the time-series elo ratings and the "special" category in particular, as various kinds of empirical moment time-series (volatility etc) are used to determine those ratings.
  • The name of this package refers to precision matrices, not numerical precision. This isn't a source of high precision covariance calculations per se. The intent is more in forecasting future realized covariance, conscious of the noise in the empirical distribution. Perhaps I'll include some more numerically stable methods from this survey to make the name more fitting. Pull requests are welcome!
  • The intent is that methods are parameter free. However some not-quite autonomous methods admit a few parameters (the factories).

Disclaimer

Not investment advice. Not M6 entry advice. Just a bunch of code subject to the MIT License disclaimers.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

precise-0.15.0.tar.gz (130.8 kB view details)

Uploaded Source

Built Distribution

precise-0.15.0-py3-none-any.whl (142.7 kB view details)

Uploaded Python 3

File details

Details for the file precise-0.15.0.tar.gz.

File metadata

  • Download URL: precise-0.15.0.tar.gz
  • Upload date:
  • Size: 130.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for precise-0.15.0.tar.gz
Algorithm Hash digest
SHA256 793acae6c71826dc55785b6210bf0efc0c7eb8039a3236eb3323b447ae4040ac
MD5 002cfe5b3f15219b6fe2e0e205bc9e95
BLAKE2b-256 95952601292e2c10322ae79c4d6a1cec8d82ee1988634447c6126dfda5de979d

See more details on using hashes here.

File details

Details for the file precise-0.15.0-py3-none-any.whl.

File metadata

  • Download URL: precise-0.15.0-py3-none-any.whl
  • Upload date:
  • Size: 142.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for precise-0.15.0-py3-none-any.whl
Algorithm Hash digest
SHA256 df7435c85feba1a60185d3f3c952c5eecd06cfaa20ecf45372a4f3cd2705a6b4
MD5 fa8a4cf76515aec9036d6f47c6b8a04b
BLAKE2b-256 95afdc16fff6ef07c58bc10916cd5a35aa214fdbcf4d4ddd2c63efcc7380d6d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page