Online covariance
Project description
precise
Online covariance, correlation and precision matrix computations
Install
pip install precise
Example
from precise.covariance.util import create_correlated_dataset
from precise.covariance.onlineempirical import online_empirical_cov
import numpy as np
from pprint import pprint
data = create_correlated_dataset(10000, (2.2, 4.4, 1.5),
np.array([[0.2, 0.5, 0.7], [0.3, 0.2, 0.2], [0.5, 0.3, 0.1]]), (1, 5, 3))
s = online_empirical_cov(n_dim=data.shape[1])
for observation in data:
s = online_empirical_cov(s=s, y=observation)
pprint(s)
This will return the running state, which includes the mean and cov
{'count': 10000,
'cov': array([[0.38549265, 1.55198303, 0.73809891],
[1.55198303, 9.41813338, 6.20756741],
[0.73809891, 6.20756741, 4.79042088]]),
'identity': array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]]),
'mean': array([2.19919374, 4.42189785, 1.52406171]),
'n_dim': 3,
'ones': array([1., 1., 1.]),
'shape': (3, 3)}
To covert to corrcoef,
from precision.covariance.util import cov_to_corrcoef
pprint( cov_to_corrcoef(s['cov']) )
returns:
array([[1. , 0.81749783, 0.55345955],
[0.81749783, 1. , 0.92689045],
[0.55345955, 0.92689045, 1. ]])
See also
If you only need univariate, there is a really minimalise package momentum which avoids use of numpy.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
precise-0.0.2.tar.gz
(2.8 kB
view details)
Built Distribution
File details
Details for the file precise-0.0.2.tar.gz
.
File metadata
- Download URL: precise-0.0.2.tar.gz
- Upload date:
- Size: 2.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4dd4aa018192dea1a1db87b37c9ea2461bd78a37d65ad59083278ec81deb0e4c |
|
MD5 | 9e687a4eb322b2e35933a300a060d9a5 |
|
BLAKE2b-256 | faf9500ad0c3e67d3aadc39c071cd04629a951bbc678ed49855f812a71dbf73f |
File details
Details for the file precise-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: precise-0.0.2-py3-none-any.whl
- Upload date:
- Size: 3.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6d5e9f29c9bc94e7cab9364b59f83dbfe0e085c60c5a515c9e0902e4c7dc85dc |
|
MD5 | 4eb16e2ac619dee8cf4c5524c89c16e5 |
|
BLAKE2b-256 | cba9a7851ca025287c451d4eacc9f429532a39706b0c52096204cba76b720b12 |