Skip to main content

The home of Schur Hierarchical Portfolios: an aesthetically pleasing version of Hierarchical Risk Parity

Project description

precise docs tests tests-scipy-173 tests-sans-ppo License: MIT

Contents:

  1. A collection of online (incremental) covariance forecasting and portfolio construction functions. See docs.

  2. "Schur Complementary" portfolio construction, a new approach that leans on connection between top-down (hierarchical) and bottom-up (optimization) portfolio construction revealed by block matrix inversion. See my posts on the methodology and its role in the hijacking of the M6 contest.

  3. A small compendium of portfolio theory papers tilted towards my interests. See literature.

One observes that tools for portfolio construction might also be useful in optimizing a portfolio of models.



Usage

See the docs, but briefly:

Covariance estimation

Here y is a vector:

from precise.skaters.covariance.ewapm import ewa_pm_emp_scov_r005_n100 as f 
s = {}
for y in ys:
    x, x_cov, s = f(s=s, y=y)

This package contains lots of different "f"s. There is a LISTING_OF_COV_SKATERS with links to the code. See the covariance documentation.

Portfolio weights

Here y is a vector:

    from precise.skaters.managers.schurmanagers import schur_weak_pm_t0_d0_r025_n50_g100_long_manager as mgr
    s = {}
    for y in ys:
        w, s = mgr(s=s, y=y)

This package contains lots of "mgr"'s. There is a LISTING_OF_MANAGERS with links to respective code. See the manager documentation.

Install

pip install precise 

or for latest:

pip install git+https://github.com/microprediction/precise.git

Trouble? It probably isn't with precise per se.

pip install --upgrade pip
pip install --upgrade setuptools 
pip install --upgrade wheel
pip install --upgrade ecos   # <--- Try conda install ecos if this fails
pip install --upgrade osqp   # <-- Can be tricky on some systems see https://github.com/cvxpy/cvxpy/issues/1190#issuecomment-994613793
pip install --upgrade pyportfolioopt # <--- Skip if you don't plan to use it
pip install --upgrade riskparityportfolio
pip install --upgrade scipy
pip install --upgrade precise 

Miscellaneous

  • Here is some related, and potentially related, literature.
  • This is a piece of the microprediction project aimed at creating millions of autonomous critters to distribute AI at low cost, should you ever care to cite the same. The uses include mixtures of experts models for time-series analysis, buried in timemachines somewhere.
  • If you just want univariate calculations, and don't want numpy as a dependency, there is momentum. However if you want univariate forecasts of the variance of something, as distinct from mere online calculations of the same, you might be better served by the timemachines package. In particular I would suggest checking the time-series elo ratings and the "special" category in particular, as various kinds of empirical moment time-series (volatility etc) are used to determine those ratings.
  • The name of this package refers to precision matrices, not numerical precision. This isn't a source of high precision covariance calculations per se. The intent is more in forecasting future realized covariance, conscious of the noise in the empirical distribution. Perhaps I'll include some more numerically stable methods from this survey to make the name more fitting. Pull requests are welcome!
  • The intent is that methods are parameter free. However some not-quite autonomous methods admit a few parameters (the factories).

Disclaimer

Not investment advice. Not M6 entry advice. Just a bunch of code subject to the MIT License disclaimers.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

precise-0.14.1.tar.gz (130.7 kB view details)

Uploaded Source

Built Distribution

precise-0.14.1-py3-none-any.whl (157.8 kB view details)

Uploaded Python 3

File details

Details for the file precise-0.14.1.tar.gz.

File metadata

  • Download URL: precise-0.14.1.tar.gz
  • Upload date:
  • Size: 130.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for precise-0.14.1.tar.gz
Algorithm Hash digest
SHA256 9dd823141c5af3518fea93d0973be37ab7ffecaa1e55d270e356fa60fa8b92f1
MD5 7bd27dbe4a7f1b88fcf35a3807392c3f
BLAKE2b-256 1f25d7d1f39981b4afb7193554c36d47a5221718baf2dcbd413f73f4550bcbd4

See more details on using hashes here.

File details

Details for the file precise-0.14.1-py3-none-any.whl.

File metadata

  • Download URL: precise-0.14.1-py3-none-any.whl
  • Upload date:
  • Size: 157.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for precise-0.14.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a8be5694417d6427e6d938f2ec6191c9e9afee58e693bb609c05ad73e7bc7a44
MD5 092e55466c5dcf96882b0639fc366b34
BLAKE2b-256 c9f4a842c68e8de6d4d2f9200cedd44b07eee23ea084ffcf9a562dc57d7b2396

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page