Flexible, concise preconditions.
Project description
preconditions - A precondition decorator utility which relies on parameter-name equivalence for conciseness and consistency.
Examples
First let’s take a tour of examples. All examples assume the preconditions decorator has been imported:
from preconditions import preconditions
Basic type checking
The double application function requires that the i parameter is an int, which is verified by a single predicate (the lambda expression):
@preconditions(lambda i: isinstance(i, int))
def double(i):
return 2*i
Multiple predicates
Multiple predicates may be specified:
@preconditions(
lambda i: isinstance(i, int),
lambda i: i > 0,
)
def double(i):
return 2*i
Note that this is functionally equivalent to this single predicate version:
@preconditions(
lambda i: isinstance(i, int) and i > 0,
)
def double(i):
return 2*i
The multi-predicate version should (eventually) have more specific error reporting for a failure, while the single predicate version may be more efficient.
Multiple arguments
Multiple predicates can express preconditions for multiple arguments:
@preconditions(
lambda s: isinstance(s, unicode),
lambda n: isinstance(n, int) and n >= 0,
)
def repeat(s, n):
return s*n
However, a single predicate can express preconditions for multiple arguments. This allows relational preconditions:
@preconditions(
lambda a, b: a <= b
)
def strict_range(a, b):
return range(a, b)
Method preconditions
Predicates can be expressed for methods, including relations to self. For example, a Monotonic instance ensures that each call to .set must pass a value larger than any previous call:
class Monotonic (object):
def __init__(self):
self.v = 0
@preconditions(lambda self, v: v > self.v)
def set(self, v):
self.v = v
Preconditions can be applied to special methods, such as __new__, __init__, __call__, etc…
class LinearRange (tuple):
@preconditions(
lambda a: isinstance(a, float),
lambda b: isinstance(b, float),
lambda a, b: a < b,
)
def __new__(cls, a, b):
return super(OrderedTuple, cls).__new__(cls, (a, b))
@preconditions(lambda w: 0 <= w < 1.0)
def __call__(self, w):
lo, hi = self
return w * (hi - lo) + lo
@preconditions(lambda x: self[0] <= x < self[1])
def invert(self, x):
lo, hi = self
return (x - lo) / (hi - lo)
Concepts
An application function may be guarded with precondition predicates. These predicates are callables passed to the preconditions decorator. Consider this code:
@preconditions(
lambda a: isinstance(a, float) and a >= 0,
lambda b: isinstance(b, float) and b >= 0,
)
def area(a, b):
return a*b
The application function is area, and it has two predicates defined with lambda, each of which ensures one of the arguments is a non-negative float.
Parameter Name Equivalence
The parameter names in a predicate must match parameter names in the application function. This is known as parameter name equivalence [1].
One exception to this rule is for default parameters within predicates. Default parameters may be used to associate some state at predicate definition time. For example:
scores = {}
@preconditions(
lambda color, _colors=['RED', 'GREEN', 'BLUE']: color in _colors
)
def get_color_score(color):
return scores[color]
This feature may be most convenient when there’s a need to remember a local loop variable.
Similar Projects
covenant - Code contracts for Python 3.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file preconditions-0.1.tar.gz
.
File metadata
- Download URL: preconditions-0.1.tar.gz
- Upload date:
- Size: 5.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e783f97bee1e3302745a67575ce788fc98874968e1c9343b7e0cdfd5d4c13527 |
|
MD5 | c61bf4e2f5052ea8ff6903fa656a2e23 |
|
BLAKE2b-256 | 5d19324c00d1399e5997c25d49ece9f9f68868621f06ea1f553671229d28601d |