A tool for predictive analytic
Project description
A package to make common data analysis easier
Objective: To make common analysis easier and more expressive.
To install the package
pip install morris-learning==0.0.2
Let me show you how the package works
Input [1]:
from morris_lee_package import morris_coding as m
df =m.get_df()
df
Output [1]:
+----+--------+--------+----------+--------+
| | col1 | col2 | col3 | col4 |
+====+========+========+==========+========+
| 0 | 1 | 3 | dog | 9 |
+----+--------+--------+----------+--------+
| 1 | 2 | 4 | | 8 |
+----+--------+--------+----------+--------+
| 2 | 3 | 5 | dog | nan |
+----+--------+--------+----------+--------+
| 3 | 4 | 6 | elephant | 6 |
+----+--------+--------+----------+--------+
| 4 | 5 | 7 | dragon | 5 |
+----+--------+--------+----------+--------+
Input [2]:
# To identify whether there is any null values:
m.null(df,'df')
# To easy print dimension of a dataframe
m.shape(df, 'df')
Output [2]:
STATUS: There is null value in dataframe
STATUS: Nulls of df = {'col3': '1 (20.0%)', 'col4': '1 (20.0%)'} of total 5
STATUS: Dimension of "df" = (5, 4)
Input [3]:
# To identify whether there is any duplicate values in a column:
m.duplicate(df, 'col3')
Output [3]:
STATUS: There are 1 duplicate values in the column of "col3"
Input [4]:
# To easy print value counts of a column, including also percentage:
m.vc(df, 'col3')
Output [4]:
+----------+---------+------------------+
| col3 | count | percentage (%) |
+==========+=========+==================+
| dog | 2 | 50 |
+----------+---------+------------------+
| dragon | 1 | 25 |
+----------+---------+------------------+
| elephant | 1 | 25 |
+----------+---------+------------------+
Input [5]:
# To easy drop a column:
m.drop(df, 'col3')
Output [5]:
+----+--------+--------+--------+
| | col1 | col2 | col4 |
+====+========+========+========+
| 0 | 1 | 3 | 9 |
+----+--------+--------+--------+
| 1 | 2 | 4 | 8 |
+----+--------+--------+--------+
| 2 | 3 | 5 | nan |
+----+--------+--------+--------+
| 3 | 4 | 6 | 6 |
+----+--------+--------+--------+
| 4 | 5 | 7 | 5 |
+----+--------+--------+--------+
Input [6]:
# To easy one_hot_encode a column:
m.one_hot_encode(df, 'col3')
Output [6]:
+----+--------+--------+--------+-------+----------+------------+
| | col1 | col2 | col4 | dog | dragon | elephant |
+====+========+========+========+=======+==========+============+
| 0 | 1 | 3 | 9 | 1 | 0 | 0 |
+----+--------+--------+--------+-------+----------+------------+
| 1 | 2 | 4 | 8 | 0 | 0 | 0 |
+----+--------+--------+--------+-------+----------+------------+
| 2 | 3 | 5 | nan | 1 | 0 | 0 |
+----+--------+--------+--------+-------+----------+------------+
| 3 | 4 | 6 | 6 | 0 | 0 | 1 |
+----+--------+--------+--------+-------+----------+------------+
| 4 | 5 | 7 | 5 | 0 | 1 | 0 |
+----+--------+--------+--------+-------+----------+------------+
Merging -A simplified and smarter way to merge your dataset
mergex(df1 ,df2, column1, column2, df1_name=None, df2_name=None)
This is contributed by Morris Lee.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file predictive analytic-0.0.1.tar.gz
.
File metadata
- Download URL: predictive analytic-0.0.1.tar.gz
- Upload date:
- Size: 4.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f5ca794a9c3400c19af523c42f8654353b0ab7eea2a39d9a7c49b4a22565569f |
|
MD5 | d653438018895963795eae428f942c0f |
|
BLAKE2b-256 | 504276d9471a0ecb7c9f975c3701e9a7c9de6164603ea62ca6d68e0e57026529 |
File details
Details for the file predictive_analytic-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: predictive_analytic-0.0.1-py3-none-any.whl
- Upload date:
- Size: 5.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 842add022a8b239bf86ed8fa2396cb3ab0e6ed508417499a46c2bf4af6107691 |
|
MD5 | 5c232f4e4707947e28d796015fcf7ca3 |
|
BLAKE2b-256 | 9c7ecc17b84270583cf150869fb1089a98061f82391f4dc9f4d863f6bd1fe083 |