Skip to main content

Prefect integrations with Microsoft Azure services

Project description

prefect-azure

PyPI

prefect-azure is a collection of Prefect integrations for orchestration workflows with Azure.

Getting Started

Installation

Install prefect-azure with pip

pip install prefect-azure

To use Blob Storage:

pip install "prefect-azure[blob_storage]"

To use Cosmos DB:

pip install "prefect-azure[cosmos_db]"

To use ML Datastore:

pip install "prefect-azure[ml_datastore]"

Examples

Download a blob

from prefect import flow

from prefect_azure import AzureBlobStorageCredentials
from prefect_azure.blob_storage import blob_storage_download

@flow
def example_blob_storage_download_flow():
    connection_string = "connection_string"
    blob_storage_credentials = AzureBlobStorageCredentials(
        connection_string=connection_string,
    )
    data = blob_storage_download(
        blob="prefect.txt",
        container="prefect",
        azure_credentials=blob_storage_credentials,
    )
    return data

example_blob_storage_download_flow()

Use with_options to customize options on any existing task or flow:

custom_blob_storage_download_flow = example_blob_storage_download_flow.with_options(
    name="My custom task name",
    retries=2,
    retry_delay_seconds=10,
)

Run a command on an Azure container instance

from prefect import flow
from prefect_azure import AzureContainerInstanceCredentials
from prefect_azure.container_instance import AzureContainerInstanceJob


@flow
def container_instance_job_flow():
    aci_credentials = AzureContainerInstanceCredentials.load("MY_BLOCK_NAME")
    container_instance_job = AzureContainerInstanceJob(
        aci_credentials=aci_credentials,
        resource_group_name="azure_resource_group.example.name",
        subscription_id="<MY_AZURE_SUBSCRIPTION_ID>",
        command=["echo", "hello world"],
    )
    return container_instance_job.run()

Use Azure Container Instance as infrastructure

If we have a_flow_module.py:

from prefect import flow
from prefect.logging import get_run_logger

@flow
def log_hello_flow(name="Marvin"):
    logger = get_run_logger()
    logger.info(f"{name} said hello!")

if __name__ == "__main__":
    log_hello_flow()

We can run that flow using an Azure Container Instance, but first create the infrastructure block:

from prefect_azure import AzureContainerInstanceCredentials
from prefect_azure.container_instance import AzureContainerInstanceJob

container_instance_job = AzureContainerInstanceJob(
    aci_credentials=AzureContainerInstanceCredentials.load("MY_BLOCK_NAME"),
    resource_group_name="azure_resource_group.example.name",
    subscription_id="<MY_AZURE_SUBSCRIPTION_ID>",
)
container_instance_job.save("aci-dev")

Then, create the deployment either on the UI or through the CLI:

prefect deployment build a_flow_module.py:log_hello_flow --name aci-dev -ib container-instance-job/aci-dev

Visit Prefect Deployments for more information about deployments.

Azure Container Instance Worker

The Azure Container Instance worker is an excellent way to run your workflows on Azure.

To get started, create an Azure Container Instances typed work pool:

prefect work-pool create -t azure-container-instance my-aci-work-pool

Then, run a worker that pulls jobs from the work pool:

prefect worker start -n my-aci-worker -p my-aci-work-pool

The worker should automatically read the work pool's type and start an Azure Container Instance worker.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prefect_azure-0.4.0.tar.gz (45.7 kB view details)

Uploaded Source

Built Distribution

prefect_azure-0.4.0-py3-none-any.whl (33.6 kB view details)

Uploaded Python 3

File details

Details for the file prefect_azure-0.4.0.tar.gz.

File metadata

  • Download URL: prefect_azure-0.4.0.tar.gz
  • Upload date:
  • Size: 45.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for prefect_azure-0.4.0.tar.gz
Algorithm Hash digest
SHA256 4f88490f347ffc44beb2b4407d49b0f45d8790d9ce69a1fd0dffcc73bf3af57f
MD5 8e6f4a170b4364040d65dec8fab740d5
BLAKE2b-256 62a6a914065ab8dc7c7a02af482e0017a2038dd9ca8fce308c9712e1b39dae31

See more details on using hashes here.

File details

Details for the file prefect_azure-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for prefect_azure-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8b7e9d1563fde069935b58032dc4e1d0ef4504b6140ebe24c460594c430ef8f5
MD5 7f24262936181f824587c76442b7a9f6
BLAKE2b-256 a7a68fc1120a555a31e7df8b917d5b2d2d8576ea5aae2fcb6e0128f3db9f2a18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page