Skip to main content

A comprehensive toolkit for preprocessing datasets, including data reading, data summary generation, handling missing values, and categorical data encoding.

Project description

PrepDataKit

PrepDataKit is a Python package that provides a toolkit for preprocessing datasets. It offers various functions to assist in reading data from different file formats, summarizing datasets, handling missing values, and encoding categorical data.

Installation

You can install PrepDataKit using pip:

pip install prepdatakit

Sample Data

Category Price In Stock Description
Fruit 2.50 True Ripe and delicious
Animal None False Needs more data
Color 1.99 Vivid and bright
Tool 9.99 True Heavy duty and reliable (Maybe)

Download CSV

Usage

Here's an example of how to use PrepDataKit:

from prepdatakit import prepdatakit
import time
        
if __name__ == "__main__":
    
    data = prepdatakit.read_file("reviews.csv")

    # Reading the file
    print("Data Information:")
    print(prepdatakit.tabulate(data.head(), headers="keys", tablefmt="fancy_grid"))
    print("\nData Type:", type(data))
    print("Data Shape:", data.shape)
    print("=" * 50)

    # Generating summary
    summary = prepdatakit.get_summary(data)
    print("\nSummary Statistics:")
    for key, value in summary.items():
        print(key + ":")
        if isinstance(value, prepdatakit.pd.DataFrame):
            print(prepdatakit.tabulate(value, headers="keys", tablefmt="fancy_grid"))
        elif isinstance(value, dict):
            for k, v in value.items():
                print(f"  {k}: {v}")
        print("-" * 50)

    # Handling missing values
    clean_data = prepdatakit.handle_missing_values(data, strategy="remove")
    print("\nCleaned Data:")
    # print(tabulate(clean_data.head(), headers='keys', tablefmt='fancy_grid'))
    with open("clean_data.txt", "w", encoding="utf-8") as f:
        f.write(prepdatakit.tabulate(clean_data, headers="keys", tablefmt="fancy_grid"))
    print("\nData Type:", type(clean_data))

    # Encoding categorical data
    encoded_data = prepdatakit.one_hot_encode(clean_data)
    print("\nEncoded Data:")
    with open("encoded_data.txt", "w", encoding="utf-8") as f:
        f.write(prepdatakit.tabulate(encoded_data, headers="keys", tablefmt="psql"))
    # print(tabulate(encoded_data.head(), headers='keys', tablefmt='plain'))
    print("\nData Type:", type(encoded_data))
    print("Data Shape:", encoded_data.shape)
    print("=" * 50)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prepdatakit-1.5.8.tar.gz (3.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

prepdatakit-1.5.8-py3-none-any.whl (3.7 kB view details)

Uploaded Python 3

File details

Details for the file prepdatakit-1.5.8.tar.gz.

File metadata

  • Download URL: prepdatakit-1.5.8.tar.gz
  • Upload date:
  • Size: 3.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.5

File hashes

Hashes for prepdatakit-1.5.8.tar.gz
Algorithm Hash digest
SHA256 45951b95de874843e0af1748c6da9fa74283a931d01241472298e744842b4328
MD5 93ce8068fc3820bc5e54e6ec3d85c77e
BLAKE2b-256 a7573e372c26f50c5d1945c2463375b259cfccf86bc121ee1f89935c5c385189

See more details on using hashes here.

File details

Details for the file prepdatakit-1.5.8-py3-none-any.whl.

File metadata

  • Download URL: prepdatakit-1.5.8-py3-none-any.whl
  • Upload date:
  • Size: 3.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.5

File hashes

Hashes for prepdatakit-1.5.8-py3-none-any.whl
Algorithm Hash digest
SHA256 d2912bc75742b992419912f76b0c76eacb4e6df78f72253209151950360b2e55
MD5 dbdb70dfb6286d306d28e748544389b8
BLAKE2b-256 f2c5536c789b31ea6cb4eec6267d015255c96dc1065f830c170623b10e5eb13e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page