Skip to main content

Preprocessing required data for customer service purpose

Project description

preprocessing_pgp

PyPI Python License Downloads linting: pylint

preprocessing_pgp -- The Preprocessing library for any kind of data -- is a suit of open source Python modules, preprocessing techniques supporting research and development in Machine Learning. preprocessing_pgp requires Python version 3.6, 3.7, 3.8, 3.9, 3.10


Installation

To install the current release:

pip install preprocessing-pgp

To install the release with specific version (e.g. 0.1.3):

pip install preprocessing-pgp==0.1.3

To upgrade package to latest version:

pip install --upgrade preprocessing-pgp

Features

1. Vietnamese Naming Functions

1.1. Preprocessing Names

python
>>> import preprocessing_pgp.name.preprocess import basic_preprocess_name
>>> basic_preprocess_name('Phan Thị    Thúy    Hằng *$%!@#')
Phan Thị Thúy Hằng

1.2. Enrich Vietnamese Names (Pending...)

python
>>> import pandas as pd
>>> from preprocessing_pgp.name.enrich_name import process_enrich
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> enrich_data = process_enrich(data, name_col='name')

Cleansing Takes 0m0s


Enrich names takes 5m10s

>>> enrich_data.columns
Index(['name', 'predict', 'final'], dtype='object')

1.3. Extract customer type from name (New Feature)

In big data platform, user might enter not just there name into the name field but many others.

This module currently support detection of following type:

  1. customer : The name of the customer
  2. company : The name of any company related
  3. biz : The name of any business related
  4. edu : The name of any type of education related
  5. medical : The name of any medical related
python
>>> import pandas as pd
>>> from preprocessing_pgp.name.type.extractor import process_extract_name_type
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> extracted_data = process_extract_name_type(data, name_col='name')


Cleansing names takes 0m0s


Formatting names takes 0m0s


Extracting customer's type takes 0m0s


>>> extracted_data.columns
Index(['username', 'customer_type'], dtype='object')

2. Extracting Vietnamese Phones

python
>>> import pandas as pd
>>> from preprocessing_pgp.phone.extractor import process_convert_phone
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> extracted_data = process_convert_phone(phones=data, phone_col='phone')


Converting phones takes 0m1s


>>> extracted_data.columns
Index(['phone', 'is_phone_valid', 'is_mobi', 'is_new_mobi',
       'is_old_mobi', 'is_new_landline', 'is_old_landline',
       'phone_convert', 'phone_vendor', 'tail_phone_type'],
      dtype='object')

3. Verify Vietnamese Card IDs

python
>>> import pandas as pd
>>> from preprocessing_pgp.card.validation import process_verify_card
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> verified_data = process_verify_card(data, card_col='card_id')
Process cleaning card id...


Verifying card id takes 0m3s


>>> verified_data.columns
Index(['card_id', 'clean_card_id', 'is_valid', 'is_personal_id', 'is_passport',
       'is_driver_license'],
      dtype='object')

4. Extract Information in Vietnamese Address

All the region codes traced are retrieve from Đơn Vị Hành Chính Việt Nam

Apart from original columns of dataframe, we also generate columns with specific meanings:

  • cleaned_<address_col> : The cleaned address retrieve from the raw address column
  • level 1 : The raw city extracted from the cleaned address
  • best level 1 : The beautified city traced from extracted raw city
  • level 1 code : The generated city code
  • level 2 : The raw district extracted from the cleaned address
  • best level 2 : The beautified district traced from extracted raw district
  • level 2 code : The generated district code
  • level 3 : The raw ward extracted from the cleaned address
  • best level 3 : The beautified ward traced from extracted raw ward
  • level 3 code : The generated ward code
  • remained address : The remaining address not being extracted
python
>>> import pandas as pd
>>> from preprocessing_pgp.address.extractor import extract_vi_address
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> extracted_data = extract_vi_address(data, address_col='address')
Cleansing takes 0m0s


Extracting takes 0m22s


Code generation takes 0m3s

>>> extracted_data.columns
Index(['address', 'cleaned_address', 'level 1', 'best level 1', 'level 2',
       'best level 2', 'level 3', 'best level 3', 'remained address',
       'level 1 code', 'level 2 code', 'level 3 code'],
      dtype='object')

5. Validate email address

A valid email is consist of:

  1. Large company email's address (@gmail, @yahoo, @outlook, etc.)
  2. Common email address (contains at least a alphabet character in email's name)
  3. Education email (can start with a number)
  4. Not auto-email

Apart from original columns of dataframe, we also generate columns with specific meanings:

  • is_email_valid : indicator of whether the email is valid or not
python
>>> import pandas as pd
>>> from preprocessing_pgp.email.validator import process_validate_email
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> validated_data = process_validate_email(data, email_col='email')
Cleansing email takes 0m0s


Validating email takes 0m22s

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

preprocessing-pgp-0.1.42.tar.gz (53.7 MB view details)

Uploaded Source

Built Distribution

preprocessing_pgp-0.1.42-py3-none-any.whl (53.7 MB view details)

Uploaded Python 3

File details

Details for the file preprocessing-pgp-0.1.42.tar.gz.

File metadata

  • Download URL: preprocessing-pgp-0.1.42.tar.gz
  • Upload date:
  • Size: 53.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for preprocessing-pgp-0.1.42.tar.gz
Algorithm Hash digest
SHA256 2942251a97845b306ee51fdbbb606f0a5a8a9a029a6006070140890cdb290fb9
MD5 21897100bd1e8277593f98c4528667b0
BLAKE2b-256 712620818ba0d2b6c26ad129c6d49e33a8f03a45fcea16807a921f2ea0ab2e09

See more details on using hashes here.

File details

Details for the file preprocessing_pgp-0.1.42-py3-none-any.whl.

File metadata

File hashes

Hashes for preprocessing_pgp-0.1.42-py3-none-any.whl
Algorithm Hash digest
SHA256 342543aeb057df7ee8008be50543fee53372485da5f981a8718116f7366568ba
MD5 cf336640269a075c18aa3651af166f9b
BLAKE2b-256 2600ef9e138182bc69b0bebd47e866454e6dcfa3f7b065dc18f36fcd4addeb8f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page