Skip to main content

Preprocessing required data for customer service purpose

Project description

preprocessing_pgp

PyPI Python License Downloads linting: pylint

preprocessing_pgp -- The Preprocessing library for any kind of data -- is a suit of open source Python modules, preprocessing techniques supporting research and development in Machine Learning. preprocessing_pgp requires Python version 3.6, 3.7, 3.8, 3.9, 3.10


Installation

To install the current release:

pip install preprocessing-pgp

To install the release with specific version (e.g. 0.1.3):

pip install preprocessing-pgp==0.1.3

To upgrade package to latest version:

pip install --upgrade preprocessing-pgp

Features

1. Vietnamese Naming Functions

1.1. Preprocessing Names

python
>>> import preprocessing_pgp.name.preprocess import basic_preprocess_name
>>> basic_preprocess_name('Phan Thị    Thúy    Hằng *$%!@#')
Phan Thị Thúy Hằng

1.2. Enrich Vietnamese Names (Pending...)

python
>>> import pandas as pd
>>> from preprocessing_pgp.name.enrich_name import process_enrich
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> enrich_data = process_enrich(data, name_col='name')

Cleansing Takes 0m0s


Enrich names takes 5m10s

>>> enrich_data.columns
Index(['name', 'predict', 'final'], dtype='object')

1.3. Extract customer type from name (New Feature)

In big data platform, user might enter not just there name into the name field but many others.

This module currently support detection of following type:

  1. customer : The name of the customer
  2. company : The name of any company related
  3. biz : The name of any business related
  4. edu : The name of any type of education related
  5. medical : The name of any medical related
python
>>> import pandas as pd
>>> from preprocessing_pgp.name.type.extractor import process_extract_name_type
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> extracted_data = process_extract_name_type(data, name_col='name')


Cleansing names takes 0m0s


Formatting names takes 0m0s


Extracting customer's type takes 0m0s


>>> extracted_data.columns
Index(['username', 'customer_type'], dtype='object')

2. Extracting Vietnamese Phones

python
>>> import pandas as pd
>>> from preprocessing_pgp.phone.extractor import process_convert_phone
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> extracted_data = process_convert_phone(phones=data, phone_col='phone')


Converting phones takes 0m1s


>>> extracted_data.columns
Index(['phone', 'is_phone_valid', 'is_mobi', 'is_new_mobi',
       'is_old_mobi', 'is_new_landline', 'is_old_landline',
       'phone_convert', 'phone_vendor', 'tail_phone_type'],
      dtype='object')

3. Verify Vietnamese Card IDs

python
>>> import pandas as pd
>>> from preprocessing_pgp.card.validation import process_verify_card
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> verified_data = process_verify_card(data, card_col='card_id')
Process cleaning card id...


Verifying card id takes 0m3s


>>> verified_data.columns
Index(['card_id', 'clean_card_id', 'is_valid', 'is_personal_id', 'is_passport',
       'is_driver_license'],
      dtype='object')

4. Extract Information in Vietnamese Address

All the region codes traced are retrieve from Đơn Vị Hành Chính Việt Nam

Apart from original columns of dataframe, we also generate columns with specific meanings:

  • cleaned_<address_col> : The cleaned address retrieve from the raw address column
  • level 1 : The raw city extracted from the cleaned address
  • best level 1 : The beautified city traced from extracted raw city
  • level 1 code : The generated city code
  • level 2 : The raw district extracted from the cleaned address
  • best level 2 : The beautified district traced from extracted raw district
  • level 2 code : The generated district code
  • level 3 : The raw ward extracted from the cleaned address
  • best level 3 : The beautified ward traced from extracted raw ward
  • level 3 code : The generated ward code
  • remained address : The remaining address not being extracted
python
>>> import pandas as pd
>>> from preprocessing_pgp.address.extractor import extract_vi_address
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> extracted_data = extract_vi_address(data, address_col='address')
Cleansing takes 0m0s


Extracting takes 0m22s


Code generation takes 0m3s

>>> extracted_data.columns
Index(['address', 'cleaned_address', 'level 1', 'best level 1', 'level 2',
       'best level 2', 'level 3', 'best level 3', 'remained address',
       'level 1 code', 'level 2 code', 'level 3 code'],
      dtype='object')

5. Validate email address

A valid email is consist of:

  1. Large company email's address (@gmail, @yahoo, @outlook, etc.)
  2. Common email address (contains at least a alphabet character in email's name)
  3. Education email (can start with a number)
  4. Not auto-email

Apart from original columns of dataframe, we also generate columns with specific meanings:

  • is_email_valid : indicator of whether the email is valid or not
python
>>> import pandas as pd
>>> from preprocessing_pgp.email.validator import process_validate_email
>>> data = pd.read_parquet('/path/to/data.parquet')
>>> validated_data = process_validate_email(data, email_col='email')
Cleansing email takes 0m0s


Validating email takes 0m22s

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

preprocessing-pgp-0.2.9.post8.dev7.tar.gz (78.9 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file preprocessing-pgp-0.2.9.post8.dev7.tar.gz.

File metadata

File hashes

Hashes for preprocessing-pgp-0.2.9.post8.dev7.tar.gz
Algorithm Hash digest
SHA256 973dd1cec2a13470f10d737f509e1e1f26f105ebec48bf960b6d920fe6462392
MD5 4903ec72111a1554086dffa7c985f3b1
BLAKE2b-256 a91b319352b361b9b01f65b5b0dca86df4dc3e5f06b995022ef3976f71acd45d

See more details on using hashes here.

File details

Details for the file preprocessing_pgp-0.2.9.post8.dev7-py3-none-any.whl.

File metadata

File hashes

Hashes for preprocessing_pgp-0.2.9.post8.dev7-py3-none-any.whl
Algorithm Hash digest
SHA256 d27dc84f95dd1e0885d50599de6d0abc580ac340e67dba01fd6b87f60d875ca6
MD5 4e16f9e94910ceaf58b367c3af87056f
BLAKE2b-256 919140b6c495ab90c837ef5e913be86d03bbe623312abaa321b5a763b8893636

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page