Preparation tools for machine learning
Project description
pretools
Preparation tools for machine learning.
Examples
from pretools.estimators import *
from sklearn.datasets import load_boston
from sklearn.pipeline import make_pipeline
X, y = load_boston(return_X_y=True)
model = ModifiedCatBoostRegressor(random_state=0, verbose=100)
model = make_pipeline(
Profiler(),
Astype(),
NUniqueThreshold(max_freq=None),
DropCollinearFeatures(method="spearman", random_state=0),
ClippedFeatures(),
ModifiedStandardScaler(),
ModifiedSelectFromModel(model, random_state=0, threshold=1e-06),
CombinedFeatures(include_data=True),
ModifiedSelectFromModel(model, random_state=0, threshold=1e-06),
model,
)
model.fit(X, y)
Installation
pip install pretools
Testing
python setup.py test
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pretools-0.3.0.tar.gz
(13.1 kB
view details)
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
pretools-0.3.0-py3-none-any.whl
(11.4 kB
view details)
File details
Details for the file pretools-0.3.0.tar.gz.
File metadata
- Download URL: pretools-0.3.0.tar.gz
- Upload date:
- Size: 13.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
e0216e9bfc8ba922c39395e27bdd13945bab5decaedb6e06ce584e4f7f54b72b
|
|
| MD5 |
17514610ae4bc5c6057a42b499775031
|
|
| BLAKE2b-256 |
c66ea5953338dcb1b932c1a1af77853b0e9c5edf8ba6317af99a1681a565c476
|
File details
Details for the file pretools-0.3.0-py3-none-any.whl.
File metadata
- Download URL: pretools-0.3.0-py3-none-any.whl
- Upload date:
- Size: 11.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d5c090dc657017406271200a48737f71ec13c42164bdc20308d0d6ce68cd2876
|
|
| MD5 |
1faac7235043dc2cb02be6190291d404
|
|
| BLAKE2b-256 |
3fd9908b9f4a87545100b7f8d1ca38a924458caec4333036263c110cd7b376c9
|