prettified interface for TA-Lib
Project description
pretty_talib
Description
Prettified interface for TA-Lib
Install
-
Install TA-Lib dependency
- For Mac it's easy as that
brew install ta-lib
- For other platforms, or troubleshooting please check the installation guide for TA-Lib
- For Mac it's easy as that
-
Install pretty_talib
pip install pretty_talib
# or
pip3 install pretty_talib
Important Note
THE TYPE OF 'data' AND THE VALUES OF 'use_builtin_types' AND 'use_objects' HIGHLY AFFECTS EFFICIENCY.
SEE BENCHMARK BELOW (Ran 250 times)
--------------------------------------------------------------------------------------------------
| rank | setup | duration | perc |
--------------------------------------------------------------------------------------------------
| 1 | data: Dict, use_builtin_types=False, use_objects=False | 0.00626893 | |
| 2 | data: Dict, use_builtin_types=True, use_objects=False | 0.02440002 | 3.89x | -> ~5.4x slower
| 3 | data: Dict, use_builtin_types=True, use_objects=True | 0.03171391 | 5.05x | -> ~5.9x slower
| 4 | data: pandas.DataFrame, use_builtin_types=False, use_objects=False | 0.03171391 | 5.05x | -> ~6.1x slower
--------------------------------------------------------------------------------------------------
Usage
# System
import json
# Pip
import numpy
# Local
from pretty_talib import get_stats, ALL, FunctionName
l=50
timeperiod = 5
data = {
'open': numpy.random.random(l),
'high': numpy.random.random(l),
'low': numpy.random.random(l),
'close': numpy.random.random(l),
'volume': numpy.random.random(l)
}
stats = get_stats(data, timeperiod=timeperiod, use_builtin_types=False)
with open('stats.json', 'w') as file:
json.dump(stats, file, indent=4)
# BENCHMARKS
# from funcmeasure import measure
# def use_objects_false_use_builtin_types_false():
# get_stats(data, types=ALL, timeperiod=timeperiod)
# def use_objects_false_builtin_types_true():
# get_stats(data, types=ALL, timeperiod=timeperiod, use_builtin_types=True)
# def use_objects_true_use_builtin_types_true():
# get_stats(data, types=ALL, timeperiod=timeperiod, use_objects=True)
# measure(
# [
# use_objects_false_use_builtin_types_false,
# use_objects_false_builtin_types_true,
# use_objects_true_use_builtin_types_true
# ],
# times=100
# )
Credits
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pretty_talib-0.0.10.tar.gz
(12.6 kB
view details)
Built Distribution
File details
Details for the file pretty_talib-0.0.10.tar.gz
.
File metadata
- Download URL: pretty_talib-0.0.10.tar.gz
- Upload date:
- Size: 12.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.20.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c06fee78c4365cd42e262fd4f45b9cc93f78fdadf8b085552503cf9a2cf8e1e |
|
MD5 | ad1b3efe04ae1832cae162b6ce148ffd |
|
BLAKE2b-256 | e526ca266326511c8a9bcaa17ddece264d0380f68a2ca06ef1fe57f98e2bb7c7 |
File details
Details for the file pretty_talib-0.0.10-py3-none-any.whl
.
File metadata
- Download URL: pretty_talib-0.0.10-py3-none-any.whl
- Upload date:
- Size: 13.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.20.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4b636f2121ec0f4a4294bea4aea52f6d0506bec5c935608da35ac96013ce36f0 |
|
MD5 | 0e2e93bc801ceb9eea9c454392e1c2c3 |
|
BLAKE2b-256 | ef0b7f0f29b9ce5075f73fc156f57041aa8aa78503304d7d9f02158b8154766e |