Skip to main content

Pretty formatter enables pretty formatting using hanging indents, dataclasses, ellipses, and simple customizability by registering formatters.

Project description

prettyformatter

Pretty formatter enables pretty formatting using hanging indents, dataclasses, ellipses, and simple customizability by registering formatters.

For the full documentation, see here.

Installation

Windows:

py -m pip install prettyformatter

Unix/MacOS:

python3 -m pip install prettyformatter

Imports

from prettyformatter import PrettyClass, PrettyDataclass
from prettyformatter import pprint, pformat, register

JSON Data

prettyformatter works with JSON data.

batters = [
    {"id": "1001", "type": "Regular"},
    {"id": "1002", "type": "Chocolate"},
    {"id": "1003", "type": "Blueberry"},
    {"id": "1004", "type": "Devil's Food"},
]

toppings = [
    {"id": "5001", "type": None},
    {"id": "5002", "type": "Glazed"},
    {"id": "5005", "type": "Sugar"},
    {"id": "5007", "type": "Powdered Sugar"},
    {"id": "5006", "type": "Chocolate with Sprinkles"},
    {"id": "5003", "type": "Chocolate"},
    {"id": "5004", "type": "Maple"},
]

data = {"id": "0001", "type": "donut", "name": "Cake", "ppu": 0.55, "batters": batters, "topping": toppings}

pprint:

prettyformatter attempts to compromise between alignment, readability, and horizontal/vertical compactness.

Support for JSON data is also as easy as pprint(json=True).

from prettyformatter import pprint

pprint(data, json=True)
"""
{
    "id":
        "0001",
    "type":
        "donut",
    "name":
        "Cake",
    "ppu":
        0.55,
    "batters":
        [
            {"id": "1001", "type": "Regular"},
            {"id": "1002", "type": "Chocolate"},
            {"id": "1003", "type": "Blueberry"},
            {"id": "1004", "type": "Devil's Food"},
        ],
    "topping":
        [
            {"id": "5001", "type": null},
            {"id": "5002", "type": "Glazed"},
            {"id": "5005", "type": "Sugar"},
            {"id": "5007", "type": "Powdered Sugar"},
            {"id": "5006", "type": "Chocolate with Sprinkles"},
            {"id": "5003", "type": "Chocolate"},
            {"id": "5004", "type": "Maple"},
        ],
}
"""

pprint supports the same parameters as print, meaning saving to files is as easy as file=file.

from prettyformatter import pprint

with open("cake.json", mode="w") as file:
    pprint(data, json=True, file=file)

PrettyDataclass

prettyformatter supports dataclasses easily.

@dataclass
class Person(PrettyDataclass):
    name: str
    birthday: str
    phone_number: str
    address: str


print(Person("Jane Doe", "2001-01-01", "012-345-6789", "123 Sample St."))
"""
Person(
    name=
        "Jane Doe",
    birthday=
        "2001-01-01",
    phone_number=
        "012-345-6789",
    address=
        "123 Sample St.",
)
"""

register

Custom formatters for existing classes can be registered.

import numpy as np

@register(np.ndarray)
def pformat_ndarray(obj, specifier, depth, indent, shorten, json):
    if json:
        return pformat(obj.tolist(), specifier, depth, indent, shorten, json)
    with np.printoptions(formatter=dict(all=lambda x: format(x, specifier))):
        return repr(obj).replace("\n", "\n" + " " * depth)

pprint(dict.fromkeys("ABC", np.arange(9).reshape(3, 3)))
"""
{
    "A":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
    "B":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
    "C":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
}
"""

pprint(dict.fromkeys("ABC", np.arange(9).reshape(3, 3)), json=True)
"""
{
    "A":
        [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
    "B":
        [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
    "C":
        [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
}
"""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prettyformatter-1.4.3.tar.gz (10.3 kB view details)

Uploaded Source

Built Distribution

prettyformatter-1.4.3-py3-none-any.whl (11.3 kB view details)

Uploaded Python 3

File details

Details for the file prettyformatter-1.4.3.tar.gz.

File metadata

  • Download URL: prettyformatter-1.4.3.tar.gz
  • Upload date:
  • Size: 10.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for prettyformatter-1.4.3.tar.gz
Algorithm Hash digest
SHA256 a2f2d6298ac88f986a26397b96d12059e78fbc3362bd0de110d9833a0ccc9635
MD5 c671e6a5866263f950dd812f95484748
BLAKE2b-256 268bc7b2ae1a9a717d49b7a5037fa7543ac4773d2dc6c92549af098b93cd3619

See more details on using hashes here.

File details

Details for the file prettyformatter-1.4.3-py3-none-any.whl.

File metadata

File hashes

Hashes for prettyformatter-1.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 fb36678105906656b428e2ab31b0d5ec63a541d41814544e84f67d7aafc00191
MD5 17f70465d7d55062b90aaf82fce4d9a2
BLAKE2b-256 28eb41afa6affdd4f4b358cb2bc6d0004fd640d64091d7a9ea421bfd16d4ad84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page