Skip to main content

Pretty formatter enables pretty formatting using hanging indents, dataclasses, ellipses, and simple customizability by registering formatters.

Project description

prettyformatter

Pretty formatter enables pretty formatting using aligned and hanging indents for JSON, dataclasses, named tuples, and any custom formatted object such as Numpy arrays.

For the full documentation, see here.

Installation

Windows:

py -m pip install prettyformatter

Unix/MacOS:

python3 -m pip install prettyformatter

Imports

from prettyformatter import PrettyClass, PrettyDataclass
from prettyformatter import pprint, pformat, register

JSON Data

prettyformatter works with JSON data.

batters = [
    {"id": "1001", "type": "Regular"},
    {"id": "1002", "type": "Chocolate"},
    {"id": "1003", "type": "Blueberry"},
    {"id": "1004", "type": "Devil's Food"},
]

toppings = [
    {"id": "5001", "type": None},
    {"id": "5002", "type": "Glazed"},
    {"id": "5005", "type": "Sugar"},
    {"id": "5007", "type": "Powdered Sugar"},
    {"id": "5006", "type": "Chocolate with Sprinkles"},
    {"id": "5003", "type": "Chocolate"},
    {"id": "5004", "type": "Maple"},
]

data = {"id": "0001", "type": "donut", "name": "Cake", "ppu": 0.55, "batters": batters, "topping": toppings}

pprint:

prettyformatter attempts to compromise between alignment, readability, and horizontal/vertical compactness.

Support for JSON data is also as easy as pprint(json=True).

from prettyformatter import pprint

pprint(data, json=True)
"""
{
    "id"    : "0001",
    "type"  : "donut",
    "name"  : "Cake",
    "ppu"   : 0.55,
    "batters":
        [
            {"id": "1001", "type": "Regular"},
            {"id": "1002", "type": "Chocolate"},
            {"id": "1003", "type": "Blueberry"},
            {"id": "1004", "type": "Devil's Food"},
        ],
    "topping":
        [
            {"id": "5001", "type": None},
            {"id": "5002", "type": "Glazed"},
            {"id": "5005", "type": "Sugar"},
            {"id": "5007", "type": "Powdered Sugar"},
            {"id": "5006", "type": "Chocolate with Sprinkles"},
            {"id": "5003", "type": "Chocolate"},
            {"id": "5004", "type": "Maple"},
        ],
}
"""

pprint supports the same parameters as print, meaning saving to files is as easy as file=file.

from prettyformatter import pprint

with open("cake.json", mode="w") as file:
    pprint(data, json=True, file=file)

PrettyDataclass

prettyformatter supports dataclasses easily.

@dataclass
class Person(PrettyDataclass):
    name: str
    birthday: str
    phone_number: str
    address: str


print(Person("Jane Doe", "2001-01-01", "012-345-6789", "123 Sample St."))
"""
Person(
    name=
        "Jane Doe",
    birthday=
        "2001-01-01",
    phone_number=
        "012-345-6789",
    address=
        "123 Sample St.",
)
"""

register

Custom formatters for existing classes can be registered.

import numpy as np

@register(np.ndarray)
def pformat_ndarray(obj, specifier, depth, indent, shorten, json):
    if json:
        return pformat(obj.tolist(), specifier, depth, indent, shorten, json)
    with np.printoptions(formatter=dict(all=lambda x: format(x, specifier))):
        return repr(obj).replace("\n", "\n" + " " * depth)

pprint(dict.fromkeys("ABC", np.arange(9).reshape(3, 3)))
"""
{
    "A":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
    "B":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
    "C":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
}
"""

pprint(dict.fromkeys("ABC", np.arange(9).reshape(3, 3)), json=True)
"""
{
    "A" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
    "B" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
    "C" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
}
"""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prettyformatter-1.5.2.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

prettyformatter-1.5.2-py3-none-any.whl (11.4 kB view details)

Uploaded Python 3

File details

Details for the file prettyformatter-1.5.2.tar.gz.

File metadata

  • Download URL: prettyformatter-1.5.2.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for prettyformatter-1.5.2.tar.gz
Algorithm Hash digest
SHA256 a37289fedbbff799ffee7090f3e6821c6becec2c5a4f67de6556c992970a2eb2
MD5 b75e41d9124631ffad8e7f45c4fff32d
BLAKE2b-256 9ffcb1db2c0e12e6912d0f5a299b6785a3c6831625fac5c21b831fe914c3e656

See more details on using hashes here.

Provenance

File details

Details for the file prettyformatter-1.5.2-py3-none-any.whl.

File metadata

  • Download URL: prettyformatter-1.5.2-py3-none-any.whl
  • Upload date:
  • Size: 11.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for prettyformatter-1.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c2d32a5c39905660f517143df0c5e6a2f9311878ee648aa7d64a02dbd901f64a
MD5 7b77824509a9db7209774257d49f8a4f
BLAKE2b-256 82aeab21d608733c60aa47242ea1e88cb8bac36d57e1d21f34c0b6ec447115e6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page