Skip to main content

Pretty formatter enables pretty formatting using hanging indents, dataclasses, ellipses, and simple customizability by registering formatters.

Project description

prettyformatter

Pretty formatter enables pretty formatting using aligned and hanging indents for JSON, dataclasses, named tuples, and any custom formatted object such as Numpy arrays.

For the full documentation, see here.

Installation

Windows:

py -m pip install prettyformatter

Unix/MacOS:

python3 -m pip install prettyformatter

Imports

from prettyformatter import PrettyClass, PrettyDataclass
from prettyformatter import pprint, pformat, register

JSON Data

prettyformatter works with JSON data.

batters = [
    {"id": "1001", "type": "Regular"},
    {"id": "1002", "type": "Chocolate"},
    {"id": "1003", "type": "Blueberry"},
    {"id": "1004", "type": "Devil's Food"},
]

toppings = [
    {"id": "5001", "type": None},
    {"id": "5002", "type": "Glazed"},
    {"id": "5005", "type": "Sugar"},
    {"id": "5007", "type": "Powdered Sugar"},
    {"id": "5006", "type": "Chocolate with Sprinkles"},
    {"id": "5003", "type": "Chocolate"},
    {"id": "5004", "type": "Maple"},
]

data = {"id": "0001", "type": "donut", "name": "Cake", "ppu": 0.55, "batters": batters, "topping": toppings}

pprint:

prettyformatter attempts to compromise between alignment, readability, and horizontal/vertical compactness.

Support for JSON data is also as easy as pprint(json=True).

from prettyformatter import pprint

pprint(data, json=True)
"""
{
    "id"    : "0001",
    "type"  : "donut",
    "name"  : "Cake",
    "ppu"   : 0.55,
    "batters":
        [
            {"id": "1001", "type": "Regular"},
            {"id": "1002", "type": "Chocolate"},
            {"id": "1003", "type": "Blueberry"},
            {"id": "1004", "type": "Devil's Food"}
        ],
    "topping":
        [
            {"id": "5001", "type": None},
            {"id": "5002", "type": "Glazed"},
            {"id": "5005", "type": "Sugar"},
            {"id": "5007", "type": "Powdered Sugar"},
            {"id": "5006", "type": "Chocolate with Sprinkles"},
            {"id": "5003", "type": "Chocolate"},
            {"id": "5004", "type": "Maple"}
        ]
}
"""

pprint supports the same parameters as print, meaning saving to files is as easy as file=file.

from prettyformatter import pprint

with open("cake.json", mode="w") as file:
    pprint(data, json=True, file=file)

PrettyDataclass

prettyformatter supports dataclasses easily.

@dataclass
class Person(PrettyDataclass):
    name: str
    birthday: str
    phone_number: str
    address: str


print(Person("Jane Doe", "2001-01-01", "012-345-6789", "123 Sample St."))
"""
Person(
    name=
        "Jane Doe",
    birthday=
        "2001-01-01",
    phone_number=
        "012-345-6789",
    address=
        "123 Sample St.",
)
"""

register

Custom formatters for existing classes can be registered.

import numpy as np

@register(np.ndarray)
def pformat_ndarray(obj, specifier, depth, indent, shorten, json):
    if json:
        return pformat(obj.tolist(), specifier, depth, indent, shorten, json)
    with np.printoptions(formatter=dict(all=lambda x: format(x, specifier))):
        return repr(obj).replace("\n", "\n" + " " * depth)

pprint(dict.fromkeys("ABC", np.arange(9).reshape(3, 3)))
"""
{
    "A":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
    "B":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
    "C":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
}
"""

pprint(dict.fromkeys("ABC", np.arange(9).reshape(3, 3)), json=True)
"""
{
    "A" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
    "B" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
    "C" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
}
"""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prettyformatter-1.7.1.tar.gz (11.0 kB view details)

Uploaded Source

Built Distribution

prettyformatter-1.7.1-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file prettyformatter-1.7.1.tar.gz.

File metadata

  • Download URL: prettyformatter-1.7.1.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for prettyformatter-1.7.1.tar.gz
Algorithm Hash digest
SHA256 961f22ca5035123a3a4f2c042a8bf45208326c553081a524364a19e40df6648a
MD5 664e12fbb45490baad722aec3c916b29
BLAKE2b-256 34b36db2f723b543302ed783ad49f67433c0f7a944bfe1d9bd680da6d1452489

See more details on using hashes here.

File details

Details for the file prettyformatter-1.7.1-py3-none-any.whl.

File metadata

  • Download URL: prettyformatter-1.7.1-py3-none-any.whl
  • Upload date:
  • Size: 12.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for prettyformatter-1.7.1-py3-none-any.whl
Algorithm Hash digest
SHA256 08f043d6da58dcffd87d3a05a4b957a83ce38a94860146020411c51d693d6e66
MD5 8a1c01c3354708b0eea0b66b7b573c12
BLAKE2b-256 513c7c0c2ef0625b788d73694bcc45c8b8df26c1ddc9afbcbdf0d8fdd615aa6f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page