Skip to main content

Pretty formatter enables pretty formatting using hanging indents, dataclasses, ellipses, and simple customizability by registering formatters.

Project description

prettyformatter

Pretty formatter enables pretty formatting using aligned and hanging indents for JSON, dataclasses, named tuples, and any custom formatted object such as Numpy arrays.

For the full documentation, see here.

Installation

Windows:

py -m pip install prettyformatter

Unix/MacOS:

python3 -m pip install prettyformatter

Imports

from prettyformatter import PrettyClass, PrettyDataclass
from prettyformatter import pprint, pformat, register

JSON Data

prettyformatter works with JSON data.

batters = [
    {"id": "1001", "type": "Regular"},
    {"id": "1002", "type": "Chocolate"},
    {"id": "1003", "type": "Blueberry"},
    {"id": "1004", "type": "Devil's Food"},
]

toppings = [
    {"id": "5001", "type": None},
    {"id": "5002", "type": "Glazed"},
    {"id": "5005", "type": "Sugar"},
    {"id": "5007", "type": "Powdered Sugar"},
    {"id": "5006", "type": "Chocolate with Sprinkles"},
    {"id": "5003", "type": "Chocolate"},
    {"id": "5004", "type": "Maple"},
]

data = {"id": "0001", "type": "donut", "name": "Cake", "ppu": 0.55, "batters": batters, "topping": toppings}

pprint:

prettyformatter attempts to compromise between alignment, readability, and horizontal/vertical compactness.

Support for JSON data is also as easy as pprint(json=True).

from prettyformatter import pprint

pprint(data, json=True)
"""
{
    "id"    : "0001",
    "type"  : "donut",
    "name"  : "Cake",
    "ppu"   : 0.55,
    "batters":
        [
            {"id": "1001", "type": "Regular"},
            {"id": "1002", "type": "Chocolate"},
            {"id": "1003", "type": "Blueberry"},
            {"id": "1004", "type": "Devil's Food"}
        ],
    "topping":
        [
            {"id": "5001", "type": None},
            {"id": "5002", "type": "Glazed"},
            {"id": "5005", "type": "Sugar"},
            {"id": "5007", "type": "Powdered Sugar"},
            {"id": "5006", "type": "Chocolate with Sprinkles"},
            {"id": "5003", "type": "Chocolate"},
            {"id": "5004", "type": "Maple"}
        ]
}
"""

pprint supports the same parameters as print, meaning saving to files is as easy as file=file.

from prettyformatter import pprint

with open("cake.json", mode="w") as file:
    pprint(data, json=True, file=file)

PrettyDataclass

prettyformatter supports dataclasses easily.

@dataclass
class Person(PrettyDataclass):
    name: str
    birthday: str
    phone_number: str
    address: str


print(Person("Jane Doe", "2001-01-01", "012-345-6789", "123 Sample St."))
"""
Person(
    name=
        "Jane Doe",
    birthday=
        "2001-01-01",
    phone_number=
        "012-345-6789",
    address=
        "123 Sample St.",
)
"""

register

Custom formatters for existing classes can be registered.

import numpy as np

@register(np.ndarray)
def pformat_ndarray(obj, specifier, depth, indent, shorten, json):
    if json:
        return pformat(obj.tolist(), specifier, depth, indent, shorten, json)
    with np.printoptions(formatter=dict(all=lambda x: format(x, specifier))):
        return repr(obj).replace("\n", "\n" + " " * depth)

pprint(dict.fromkeys("ABC", np.arange(9).reshape(3, 3)))
"""
{
    "A":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
    "B":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
    "C":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
}
"""

pprint(dict.fromkeys("ABC", np.arange(9).reshape(3, 3)), json=True)
"""
{
    "A" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
    "B" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
    "C" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
}
"""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prettyformatter-2.0.12.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

prettyformatter-2.0.12-py3-none-any.whl (15.0 kB view details)

Uploaded Python 3

File details

Details for the file prettyformatter-2.0.12.tar.gz.

File metadata

  • Download URL: prettyformatter-2.0.12.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for prettyformatter-2.0.12.tar.gz
Algorithm Hash digest
SHA256 cab7727738750c41392dc068212dcdcf5d4709a122168ecc37c1dded6f527a63
MD5 2275d98ad7e0903827ab0e31b4205c17
BLAKE2b-256 d40e9429c1901eb08be7e1d825e2233850574a3682119ce2c53f912b2eb57a5c

See more details on using hashes here.

Provenance

File details

Details for the file prettyformatter-2.0.12-py3-none-any.whl.

File metadata

File hashes

Hashes for prettyformatter-2.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 4de9fd87561deaf25bb1c2e947958f62203daf64f0bca275e6a4990507bb67b8
MD5 4bc48e6eee8521a5c719a6255a8efc29
BLAKE2b-256 14629cb341998b07a2340abd788d8de13e508fd96ec9afc47ecb4688a6dee15a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page