Skip to main content

Pretty formatter enables pretty formatting using hanging indents, dataclasses, ellipses, and simple customizability by registering formatters.

Project description

prettyformatter

Pretty formatter enables pretty formatting using aligned and hanging indents for JSON, dataclasses, named tuples, and any custom formatted object such as Numpy arrays.

For the full documentation, see here.

Installation

Windows:

py -m pip install prettyformatter

Unix/MacOS:

python3 -m pip install prettyformatter

Imports

from prettyformatter import PrettyClass, PrettyDataclass
from prettyformatter import pprint, pformat, register

JSON Data

prettyformatter works with JSON data.

batters = [
    {"id": "1001", "type": "Regular"},
    {"id": "1002", "type": "Chocolate"},
    {"id": "1003", "type": "Blueberry"},
    {"id": "1004", "type": "Devil's Food"},
]

toppings = [
    {"id": "5001", "type": None},
    {"id": "5002", "type": "Glazed"},
    {"id": "5005", "type": "Sugar"},
    {"id": "5007", "type": "Powdered Sugar"},
    {"id": "5006", "type": "Chocolate with Sprinkles"},
    {"id": "5003", "type": "Chocolate"},
    {"id": "5004", "type": "Maple"},
]

data = {"id": "0001", "type": "donut", "name": "Cake", "ppu": 0.55, "batters": batters, "topping": toppings}

pprint:

prettyformatter attempts to compromise between alignment, readability, and horizontal/vertical compactness.

Support for JSON data is also as easy as pprint(json=True).

from prettyformatter import pprint

pprint(data, json=True)
"""
{
    "id"    : "0001",
    "type"  : "donut",
    "name"  : "Cake",
    "ppu"   : 0.55,
    "batters":
        [
            {"id": "1001", "type": "Regular"},
            {"id": "1002", "type": "Chocolate"},
            {"id": "1003", "type": "Blueberry"},
            {"id": "1004", "type": "Devil's Food"}
        ],
    "topping":
        [
            {"id": "5001", "type": None},
            {"id": "5002", "type": "Glazed"},
            {"id": "5005", "type": "Sugar"},
            {"id": "5007", "type": "Powdered Sugar"},
            {"id": "5006", "type": "Chocolate with Sprinkles"},
            {"id": "5003", "type": "Chocolate"},
            {"id": "5004", "type": "Maple"}
        ]
}
"""

pprint supports the same parameters as print, meaning saving to files is as easy as file=file.

from prettyformatter import pprint

with open("cake.json", mode="w") as file:
    pprint(data, json=True, file=file)

PrettyDataclass

prettyformatter supports dataclasses easily.

@dataclass
class Person(PrettyDataclass):
    name: str
    birthday: str
    phone_number: str
    address: str


print(Person("Jane Doe", "2001-01-01", "012-345-6789", "123 Sample St."))
"""
Person(
    name=
        "Jane Doe",
    birthday=
        "2001-01-01",
    phone_number=
        "012-345-6789",
    address=
        "123 Sample St.",
)
"""

register

Custom formatters for existing classes can be registered.

import numpy as np

@register(np.ndarray)
def pformat_ndarray(obj, specifier, depth, indent, shorten, json):
    if json:
        return pformat(obj.tolist(), specifier, depth, indent, shorten, json)
    with np.printoptions(formatter=dict(all=lambda x: format(x, specifier))):
        return repr(obj).replace("\n", "\n" + " " * depth)

pprint(dict.fromkeys("ABC", np.arange(9).reshape(3, 3)))
"""
{
    "A":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
    "B":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
    "C":
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]]),
}
"""

pprint(dict.fromkeys("ABC", np.arange(9).reshape(3, 3)), json=True)
"""
{
    "A" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
    "B" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
    "C" : [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
}
"""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prettyformatter-2.0.3.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

prettyformatter-2.0.3-py3-none-any.whl (15.1 kB view details)

Uploaded Python 3

File details

Details for the file prettyformatter-2.0.3.tar.gz.

File metadata

  • Download URL: prettyformatter-2.0.3.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for prettyformatter-2.0.3.tar.gz
Algorithm Hash digest
SHA256 489df3ca48845148ee829fa7a9883dcfc42c034ffaf82196e3cc3aded1583d31
MD5 a18611d139c02cf58c935c8172af67ff
BLAKE2b-256 67a7debb74399838b22c01636c0cca89b5743bfa0ef4ab1d56c60b5ca45464d6

See more details on using hashes here.

File details

Details for the file prettyformatter-2.0.3-py3-none-any.whl.

File metadata

  • Download URL: prettyformatter-2.0.3-py3-none-any.whl
  • Upload date:
  • Size: 15.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for prettyformatter-2.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e77a15b08ed0e4b395b429cfd43c3267be3a4e1503c772633018f075f2e17f4b
MD5 ec9e881d3c776b10b363e3daf810eb4b
BLAKE2b-256 dd20aca1646952d186b9da381bfe5f947ac6334c317dbc9fd591fde84b25854a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page