Skip to main content

No project description provided

Project description

prfr

Probabilistic random forest regressor: random forest model that accounts for errors in predictors and yields calibrated probabilistic predictions.

Installation

pip install prfr

Example usage

import numpy as np
from prfr import ProbabilisticRandomForestRegressor, split_arrays

x_obs = np.random.uniform(0., 10., size=10000).reshape(-1, 1)
x_err = np.random.exponential(1., size=10000).reshape(-1, 1)
y_obs = np.random.normal(x_obs, x_err).reshape(-1) * 2. + 1.

train_arrays, test_arrays, valid_arrays = split_arrays(x_obs, x_err, y_obs, test_size=0.2, valid_size=0.2)
x_train, x_err_train, y_train = train_arrays
x_test, x_err_test, y_test = test_arrays
x_valid, x_err_valid, y_valid = valid_arrays

model = ProbabilisticRandomForestRegressor(n_estimators=250, n_jobs=-1)
model.fit(x_train, y_train, eX=x_err_train)
model.calibrate(x_valid, y_valid, eX=x_err_valid)
model.fit_bias(x_valid, y_valid, eX=x_err_valid)

pred = model.predict(x_test, eX=x_err_test)
pred_bounds = np.quantile(pred, [0.16, 0.84], axis=1)
pred_mean = np.mean(pred, axis=1)

print(pred.shape)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prfr-0.1.4.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

prfr-0.1.4-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file prfr-0.1.4.tar.gz.

File metadata

  • Download URL: prfr-0.1.4.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.9.12 Darwin/21.6.0

File hashes

Hashes for prfr-0.1.4.tar.gz
Algorithm Hash digest
SHA256 4f234e9c589675b041c88beaf1c5e20df1f821293a9319112c9ccd47fa6a1ed5
MD5 17f4e13d68dccf60c381bf6b31e90de4
BLAKE2b-256 ffc9a5ddfeae385b76349153d5bc241c5cfeba33b2985e84dc7338a54527ad2a

See more details on using hashes here.

File details

Details for the file prfr-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: prfr-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 12.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.9.12 Darwin/21.6.0

File hashes

Hashes for prfr-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 5cc9a108a88047affe7c59c417446f0f085185429c5388c98557f8d3f1509237
MD5 20ff66b925a160642d50372352f31cf1
BLAKE2b-256 6a22be0cb75f9a2c328d5a7292d2fd5b7de4f2ad6f38ccedf670fe1ec09b7d11

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page