No project description provided
Project description
prfr
Probabilistic random forest regressor: random forest model that accounts for errors in predictors and yields calibrated probabilistic predictions.
Installation
pip install prfr
OR
pip install git+https://github.com/al-jshen/prfr
Example usage
import numpy as np
from prfr import ProbabilisticRandomForestRegressor, split_arrays
x_obs = np.random.uniform(0., 10., size=10000).reshape(-1, 1)
x_err = np.random.exponential(1., size=10000).reshape(-1, 1)
y_obs = np.random.normal(x_obs, x_err).reshape(-1, 1) * 2. + 1.
y_err = np.ones_like(y_obs)
train, test, valid = split_arrays(x_obs, y_obs, x_err, y_err, test_size=0.2, valid_size=0.2)
model = ProbabilisticRandomForestRegressor(n_estimators=250, n_jobs=-1)
model.fit(train[0], train[1], eX=train[2], eY=train[3])
model.calibrate(valid[0], valid[1], eX=valid[2], eY=valid[3], apply_bias=False)
model.fit_bias(valid[0], valid[1], eX=valid[3])
pred = model.predict(x_test, eX=x_err_test)
pred_qtls = np.quantile(pred, [0.16, 0.5, 0.84], axis=1)
print(pred.shape)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
prfr-0.1.5.tar.gz
(12.4 kB
view details)
Built Distribution
prfr-0.1.5-py3-none-any.whl
(12.4 kB
view details)
File details
Details for the file prfr-0.1.5.tar.gz
.
File metadata
- Download URL: prfr-0.1.5.tar.gz
- Upload date:
- Size: 12.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.0b1 CPython/3.10.2 Linux/5.18.5-arch1-1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 807ffd06aca9e12f328d30a81cad5b9ed4ae95d2a4d723eed9450d76be9583d3 |
|
MD5 | f7cee7d2c201f306491bfed24ca07bab |
|
BLAKE2b-256 | 75a5c78ed1fcce3e632d0466a2e4c256f2c2fff126447093c494c9c82edd5dfa |
File details
Details for the file prfr-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: prfr-0.1.5-py3-none-any.whl
- Upload date:
- Size: 12.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.0b1 CPython/3.10.2 Linux/5.18.5-arch1-1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bab3ce18f6b627a322eb80eb36bda8364a803a71c7ea7e72437b6a7d5d858fd2 |
|
MD5 | 09d4a10a4bd86bc977622609335434f2 |
|
BLAKE2b-256 | 720327f6592da26b20b0fe93b961dcaac065d62fe9339c8556d17b2796f9aab4 |