Skip to main content

No project description provided

Project description

prfr

Probabilistic random forest regressor: random forest model that accounts for errors in predictors and labels, yields calibrated probabilistic predictions, and corrects for bias.

Installation

pip install prfr

OR

pip install git+https://github.com/al-jshen/prfr

Example usage

import numpy as np
from prfr import ProbabilisticRandomForestRegressor, split_arrays

x_obs = np.random.uniform(0., 10., size=10000).reshape(-1, 1)
x_err = np.random.exponential(1., size=10000).reshape(-1, 1)
y_obs = np.random.normal(x_obs, x_err).reshape(-1, 1) * 2. + 1.
y_err = np.ones_like(y_obs)

train, test, valid = split_arrays(x_obs, y_obs, x_err, y_err, test_size=0.2, valid_size=0.2)

model = ProbabilisticRandomForestRegressor(n_estimators=250, n_jobs=-1)
model.fit(train[0], train[1], eX=train[2], eY=train[3])
model.calibrate(valid[0], valid[1], eX=valid[2], eY=valid[3], apply_bias=False)
model.fit_bias(valid[0], valid[1], eX=valid[2])

pred = model.predict(x_test, eX=x_err_test)
pred_qtls = np.quantile(pred, [0.16, 0.5, 0.84], axis=1)

print(pred.shape)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prfr-0.1.7.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

prfr-0.1.7-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file prfr-0.1.7.tar.gz.

File metadata

  • Download URL: prfr-0.1.7.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.4 Darwin/21.4.0

File hashes

Hashes for prfr-0.1.7.tar.gz
Algorithm Hash digest
SHA256 324e2ac91e0acd652af813f0ab2b821d59f7d1d2dd43d73271f9f030ce0a32ff
MD5 0c71481afa0fdbe0f0df0150768257ff
BLAKE2b-256 47877e0d95aa0a40e8bccb0fbf7134e9e76bd130aa715ae3ae39d30ecc19642c

See more details on using hashes here.

File details

Details for the file prfr-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: prfr-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 12.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.4 Darwin/21.4.0

File hashes

Hashes for prfr-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 4477a7432420506b465eddc500d9290fae1821dc07216e6aa4620fceebbb4b0e
MD5 b51594b9f1685632c98a214c18e8913b
BLAKE2b-256 42c9d891ced38d4ce9f1efcf830e5b21063e3092b5679da00dbbcb0f766865c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page