No project description provided
Project description
prfr
Probabilistic random forest regressor: random forest model that accounts for errors in predictors and labels, yields calibrated probabilistic predictions, and corrects for bias.
Installation
pip install prfr
OR
pip install git+https://github.com/al-jshen/prfr
Example usage
import numpy as np
from prfr import ProbabilisticRandomForestRegressor, split_arrays
x_obs = np.random.uniform(0., 10., size=10000).reshape(-1, 1)
x_err = np.random.exponential(1., size=10000).reshape(-1, 1)
y_obs = np.random.normal(x_obs, x_err).reshape(-1, 1) * 2. + 1.
y_err = np.ones_like(y_obs)
train, test, valid = split_arrays(x_obs, y_obs, x_err, y_err, test_size=0.2, valid_size=0.2)
model = ProbabilisticRandomForestRegressor(n_estimators=250, n_jobs=-1)
model.fit(train[0], train[1], eX=train[2], eY=train[3])
model.calibrate(valid[0], valid[1], eX=valid[2], eY=valid[3], apply_bias=False)
model.fit_bias(valid[0], valid[1], eX=valid[2])
pred = model.predict(x_test, eX=x_err_test)
pred_qtls = np.quantile(pred, [0.16, 0.5, 0.84], axis=1)
print(pred.shape)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
prfr-0.1.7.tar.gz
(12.4 kB
view details)
Built Distribution
prfr-0.1.7-py3-none-any.whl
(12.4 kB
view details)
File details
Details for the file prfr-0.1.7.tar.gz
.
File metadata
- Download URL: prfr-0.1.7.tar.gz
- Upload date:
- Size: 12.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.2 CPython/3.10.4 Darwin/21.4.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 324e2ac91e0acd652af813f0ab2b821d59f7d1d2dd43d73271f9f030ce0a32ff |
|
MD5 | 0c71481afa0fdbe0f0df0150768257ff |
|
BLAKE2b-256 | 47877e0d95aa0a40e8bccb0fbf7134e9e76bd130aa715ae3ae39d30ecc19642c |
File details
Details for the file prfr-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: prfr-0.1.7-py3-none-any.whl
- Upload date:
- Size: 12.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.2 CPython/3.10.4 Darwin/21.4.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4477a7432420506b465eddc500d9290fae1821dc07216e6aa4620fceebbb4b0e |
|
MD5 | b51594b9f1685632c98a214c18e8913b |
|
BLAKE2b-256 | 42c9d891ced38d4ce9f1efcf830e5b21063e3092b5679da00dbbcb0f766865c2 |