Skip to main content

A prioritized sampling tool.

Project description

# Priority Memory

A prioritized sampling tool for priority memory replay.

The implementation is based on sum tree, or segmentation tree.

- Set the priority of each sample at anytime.
- When you do not know the priority of the sample, you can append
them to the buffer, and they will show up in the next sampling batch.
- When the buffer is full, drop the samples with lowest priority.

The time complexity for sampling a batch with batch size m
from a dataset with n samples is O(mlogn), for setting priority
for the batch is O(mlogn).


# Usage

> pip install priority_memory

```python

from priority_memory import FastPriorReplayBuffer

buffer = FastPriorReplayBuffer(8000)
buffer.append(features=[0.1, 0.1, 0.1], prior=1)
buffer.append(features=[0.2, 0.2, 0.2], prior=2)
buffer.append(features=[0.3, 0.3, 0.3], prior=3)
buffer.append(features=[0.4, 0.4, 0.4], prior=4)
indexes, data, weights = buffer.sample_with_weights(batch_size=2)

mae = [10, 20]
buffer.set_weights(indexes, mae)

```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

priority_memory-0.0.2.tar.gz (7.4 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page