Skip to main content

Phase Retrieval algorithms in Python

Project description

PRiPy

Phase Retrieval in Python.

This package intends to implement common phase retrieval algorithms for Adaptive Optics (AO), for use in Python-based AO simulators such as COMPASS and CEO. Ideally, these algorithms should have a common and minimal API, in order to accelerate the testing of various algorithms on a given optical system.

TODO

  • Sandbox examples (numpy AND cupy compatible),
  • CEO examples.
  • COMPASS examples,

Early implementation goals:

  • FF: Fast and Furious Wavefront Sensing,
  • LIFT: LInearised Focal-plane Technique,
  • GS: classical Gerchberg Saxton algorithm for phase estimation,
  • TAME: Taylor-based Moving horizon Estimation,

Medium-term goals:

  • COMPASS API,
  • CEO API.
  • PyPI for pip install

Installation

git clone git@github.com/jcranney/pripy.git
cd pripy
pip install .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pripy-0.1.1.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

pripy-0.1.1-py3-none-any.whl (11.8 kB view details)

Uploaded Python 3

File details

Details for the file pripy-0.1.1.tar.gz.

File metadata

  • Download URL: pripy-0.1.1.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.2 importlib-metadata/4.8.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for pripy-0.1.1.tar.gz
Algorithm Hash digest
SHA256 c4a424f323d55efb0b0801b626aa73a56ee91c9c5ae9fecf9d057ee4ba4d64e2
MD5 a0668fc9b4924d5608606ef438e66d43
BLAKE2b-256 c826bdc0788a1fab88bcc5dcc26aa1b4c7a0ea797455a19336df85a151a43412

See more details on using hashes here.

File details

Details for the file pripy-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: pripy-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 11.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.2 importlib-metadata/4.8.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for pripy-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e8e4eecae52aadf0bb6da6fdee76ee1b9af90b268fe6875f0f30d239ffe4ecbb
MD5 99dd3d0690a530e5b36ad5db9025ce89
BLAKE2b-256 bf3be6e931dcf88adfeb80c0cf19f54eb215fd073c7bed93de62c67cee0cc6e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page