Skip to main content

A thin client for communicating with the Private AI de-identication API.

Project description

Private AI Python Client

A Python client library for communicating with the Private AI API. This document provides information about how to best use the client. For more information, see Private AI's API Documentation.

Quick Links

  1. Installation
  2. Quick Start
  3. Running the tests
  4. Working with the Client
  5. Request Objects
  6. Sample Use

Installation

pip install privateai_client

Quick Start

from privateai_client import PAIClient
from privateai_client import request_objects

url="http://localhost:8080"

client = PAIClient(url="http://localhost:8080")
text_request = request_objects.process_text_obj(text=["My sample name is John Smith"])
response = client.process_text(text_request)

print(text_request.text)
print(response.processed_text)

Output:

['My sample name is John Smith']
['My sample name is [NAME_1]']

Running the tests

We use pytest to run our tests in the tests folder.

To run from command line, ensure you have pytest installed, and then run pytest from the main project folder.

pip install -U pytest -y
pytest

Alternatively, you can run automatically run all tests from the Testing window in Visual Studio Code.

Working With The Client

Initializing the Client

The PAI client requires a scheme, host, and optional port to initialize. Alternatively, a full url can be used. Once created, the connection can be tested with the client's ping function

scheme = 'http'
host = 'localhost'
port= '8080'
client = PAIClient(scheme, host, port)

client.ping()


url = "http://localhost:8080"
client = PAIClient(url=url)

client.ping()

Output:

True
True

Adding Authorization to the Client

from privateai_client import PAIClient
# On initialization
client = PAIClient(url="http://localhost:8080", api_key='testkey')

# After initialization
client = PAIClient(url="http://localhost:8080")
client.ping()
client.add_api_key("testkey")
client.ping()

Output:

The request returned with a 401 Unauthorized
True

Making Requests

Once initialized the client can be used to make any request listed in the Private-AI documentation

Available requests:

Client Function Endpoint
get_version() /
ping() /healthz
get_metrics() /metrics
get_diagnostics() /diagnostics
process_text() /v3/process/text
process_files_uri() /v3/process/files/uri
process_files_base64() /v3/process/files/base64
bleep() /v3/bleep

Requests can be made using dictionaries:

sample_text = ["This is John Smith's sample dictionary request"]
text_dict_request = {"text": sample_text}

response = client.process_text(text_dict_request)
print(response.processed_text)

Output:

["This is [NAME_1]'s sample dictionary request"]

or using built-in request objects:

from privateai_client import request_objects

sample_text = "This is John Smith's sample process text object request"
text_request_object =  request_objects.process_text_obj(text=[sample_text])

response = client.process_text(text_request_object)
print(response.processed_text)

Output:

["This is [NAME_1]'s sample process text object request"]

Request Objects

Request objects are a simple way of creating request bodies without the tediousness of writing dictionaries. Every post request (as listed in the Private-AI documentation) has its own request own request object.

from privateai_client import request_objects

sample_obj = request_objects.file_url_obj(uri='path/to/file.jpg')
sample_obj.uri

Output:

'path/to/file.jpg'

Additionally there are request objects for each nested dictionary of a request:

from privateai_client import request_objects

sample_text = "This is John Smith's sample process text object request where names won't be removed"

# sub-dictionary of entity_detection
sample_entity_type_selector = request_objects.entity_type_selector_obj(type="DISABLE", value=['NAME', 'NAME_GIVEN', 'NAME_FAMILY'])

# sub-dictionary of a process text request
sample_entity_detection = request_objects.entity_detection_obj(entity_types=[sample_entity_type_selector])

# request object created using the sub-dictionaries
sample_request = request_objects.process_text_obj(text=[sample_text], entity_detection=sample_entity_detection)
response = client.process_text(sample_request)
print(response.processed_text)

Output:

["This is John Smith's sample process text object request where names won't be removed"]

Building Request Objects

Request objects can initialized by passing in all the required values needed for the request as arguments or from a dictionary, using the object's fromdict function. Any object can be created as per the Private AI documentation.

# Passing arguments
sample_data = "JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9UaXRsZSAoc2FtcGxlKQovUHJvZHVj..."
sample_content_type = "application/pdf"

sample_file_obj = request_objects.file_obj(data=sample_data, content_type=sample_content_type)

# Passing a dictionary using .fromdict()
sample_dict = {"data": "JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9UaXRsZSAoc2FtcGxlKQovUHJvZHVj...",
               "content_type": "application/pdf"}

sample_file_obj2 = request_objects.file_obj.fromdict(sample_dict)

Request objects also can be formatted as dictionaries, using the request object's to_dict() function:

from privateai_client import request_objects

sample_text = "Sample text."
sample_accuracy = "standard"

# Create the nested request objects
sample_entity_type_selector = request_objects.entity_type_selector_obj(type="DISABLE", value=['HIPAA'])
sample_entity_detection = request_objects.entity_detection_obj(
    entity_types=[sample_entity_type_selector],
    accuracy=sample_accuracy
)

# Create the request object
sample_request = request_objects.process_text_obj(text=[sample_text], entity_detection=sample_entity_detection)

# All nested request objects are also formatted
print(sample_request.to_dict())

Output:

{
 'text': ['Sample text.'],
 'link_batch': False,
 'entity_detection': {'accuracy': 'standard', 'entity_types': [{'type': 'DISABLE', 'value': ['HIPAA']}], 'filter': [], 'return_entity': True},
 'processed_text': {'type': 'MARKER', 'pattern': '[UNIQUE_NUMBERED_ENTITY_TYPE]'}
}

Sample Use

Processing a directory of files

from privateai_client import PAIClient
from privateai_client.objects import request_objects
import os
import logging

file_dir = "/path/to/file/directory"
client = PAIClient(url="http://localhost:8080")
for file_name in os.listdir(file_dir):
    filepath = os.path.join(file_dir, file_name)
    if not os.path.isfile(filepath):
        continue
    req_obj = request_objects.file_url_obj(uri=filepath)
    # NOTE this method of file processing requires the container to have an the input and output directories mounted
    resp = client.process_files_uri(req_obj)

Processing a Base64 file

from privateai_client import PAIClient
from privateai_client.objects import request_objects
import base64
import os
import logging

file_dir = "/path/to/your/file"
file_name = 'sample_file.pdf'
filepath = os.path.join(file_dir,file_name)
file_type= "type/of_file" #eg. application/pdf
client = PAIClient(url="http://localhost:8080")

# Read from file
with open(filepath, "rb") as b64_file:
    file_data = base64.b64encode(b64_file.read())
    file_data = file_data.decode("ascii")

# Make the request
file_obj = request_objects.file_obj(data=file_data, content_type=file_type)
request_obj = request_objects.file_base64_obj(file=file_obj)
resp = client.process_files_base64(request_object=request_obj)

# Write to file
with open(os.path.join(file_dir,f"redacted-{file_name}"), 'wb') as redacted_file:
    processed_file = resp.processed_file.encode("ascii")
    processed_file = base64.b64decode(processed_file, validate=True)
    redacted_file.write(processed_file)

Bleep an audio file

from privateai_client import PAIClient
from privateai_client.objects import request_objects
import base64
import os
import logging

file_dir = "/path/to/your/file"
file_name = 'sample_file.pdf'
filepath = os.path.join(file_dir,file_name)
file_type= "type/of_file" #eg. audio/mp3 or audio/wav
client = PAIClient(url="http://localhost:8080")


file_dir = "/home/adam/workstation/file_processing/test_audio"
file_name = "test_audio.mp3"
filepath = os.path.join(file_dir,file_name)
file_type = "audio/mp3"
with open(filepath, "rb") as b64_file:
    file_data = base64.b64encode(b64_file.read())
    file_data = file_data.decode("ascii")

file_obj = request_objects.file_obj(data=file_data, content_type=file_type)
timestamp = request_objects.timestamp_obj(start=1.12, end=2.14)
request_obj = request_objects.bleep_obj(file=file_obj, timestamps=[timestamp])

resp = client.bleep(request_object=request_obj)
with open(os.path.join(file_dir,f"redacted-{file_name}"), 'wb') as redacted_file:
    processed_file = resp.bleeped_file.encode("ascii")
    processed_file = base64.b64decode(processed_file, validate=True)
    redacted_file.write(processed_file)

Working with structured data

Redacting a data frame column by column

NOTE: When de-identifying smaller strings of structured data, more accurate results can be achieved by passing in the whole column as a string (including the header) and a delimiter. For example, making a request row by row for a column named SSN will return data identified as PHONE_NUMBER, even when the header is included
# Working with data frames
import pandas as pd
from privateai_client import PAIClient
from privateai_client.objects import request_objects

client = PAIClient(url="http://localhost:8080")
data_frame = pd.DataFrame(
    {
        "Name": [
            "Braund, Mr. Owen Harris",
            "Allen, Mr. William Henry",
            "Bonnell, Miss. Elizabeth",
        ],
        "Age": [22, 35, 58],
        "Sex": ["male", "male", "female"],
    }
)
print(data_frame)
text_req = request_objects.process_text_obj(text=[])
for column in data_frame.columns:
    text_req.text.append(f"{column}:{' | '.join([str(row) for row in data_frame[column]])}")

resp = client.process_text(text_req)
redacted_data = dict()
for row in resp.processed_text:
    data = row.split(':',1)
    redacted_data[data[0]] = data[1].split(' | ')
redacted_data_frame = pd.DataFrame(redacted_data)
print(redacted_data_frame)

Redacting cell by cell for columns with large text content

# Working with data frames
import pandas as pd
from privateai_client import PAIClient
from privateai_client.objects import request_objects

client = PAIClient(url="http://localhost:8080")
data_frame = pd.DataFrame(
    {
        "Book": [
            "Treasure Island",
            "Moby Dick",
        ],
        "chapter": [1,1],
        "paragraph": [1,1],
        "text": ["The Old Sea-dog at the Admiral Benbow\nSquire Trelawney, Dr. Livesey, and the rest of...",
                 "Call me Ishmael. Some years ago—never mind how long precisely—having little or no money in my purse..."
                 ]
    }
)
obj = request_objects.process_text_obj
func = client.process_text
data_frame['text'] = [(lambda x: func(obj(text=[x])).processed_text[0])(row) for row in data_frame['text']]

Reidentifying Text

from privateai_client import PAIClient
from privateai_client import request_objects

client = PAIClient(url="http://localhost:8080")

# Deidentify the text
initial_text = 'My name is John. I work for Private AI'
request_obj = request_objects.process_text_obj(text=[initial_text])
response_obj = client.process_text(request_obj)

# Build reidentify request object from the deidentified response
new_request_obj = response_obj.get_reidentify_request()
# Call the reidentify Route
new_response_obj = client.reidentify_text(new_request_obj)
print(new_response_obj.body)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

privateai-1.3.1.tar.gz (16.8 kB view details)

Uploaded Source

Built Distribution

privateai-1.3.1-py3-none-any.whl (14.6 kB view details)

Uploaded Python 3

File details

Details for the file privateai-1.3.1.tar.gz.

File metadata

  • Download URL: privateai-1.3.1.tar.gz
  • Upload date:
  • Size: 16.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for privateai-1.3.1.tar.gz
Algorithm Hash digest
SHA256 a12e35aa26ef5a99ee6bbaf9f80d3da6216a2d6521a0c74b6eb3958951bffb00
MD5 a79cb61190c6ab280380ed9f62427d8a
BLAKE2b-256 b883043a5c12dcaf6039ab3f3d7f337a7c57d719722581215984ddf9a2473a30

See more details on using hashes here.

File details

Details for the file privateai-1.3.1-py3-none-any.whl.

File metadata

  • Download URL: privateai-1.3.1-py3-none-any.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for privateai-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 867fe33a5c8cbcb565e1ec3a420f04574579b5404be375a295c1df085b2a5ffc
MD5 be928845b8b82452bdd0986a6f7d470a
BLAKE2b-256 2ff17a2db537c08014d968478b6fb8058069be8938db870aeaf94c7a8cc9854d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page