Skip to main content

A thin client for communicating with the Private Ai de-identication api.

Project description

paiclient

A client for communicating with the Private Ai de-identication api. This document provides information about how to best use the client. For more information, see Private Ai's API Documentation.

Quick Links

  1. Installation
  2. Quick Start
  3. Working with the Client
  4. Request Objects
  5. Sample Use

Installation

pip install pai_thin_client

Quick Start

from pai_thin_client import PAIClient
from pai_thin_client import request_objects

schema = "http"
host = "localhost"
port = "8080"

client = PAIClient(schema=schema, host=host, port=port)

text_request = request_objects.process_text(text=["My sample name is John Smith"])
text_request.text

response = client.process_text(text_request)
response.processed_text

Output:

["My sample name is John Smith"]
['My sample name is [NAME_1]']

Working with the Client

Initializing the Client

the PAI client requires a scheme, host and optional port to initialize. Once created, the connection can be tested with the client's ping function

from pai_thin_client import PAIClient
scheme = 'http'
host = 'localhost'
port= '8080'
client = PAIClient(scheme, host, port)
 
client.ping()

Output:

True

Making Requests

Once initialized the client can be used to make any request listed in the Private-Ai documentation

Available requests:

Client Function Endpoint
get_version /
get_metrics /metrics
process_text /v3/process/text
process_files_url /v3/process/files/uri
process_files_base64 /v3/process/files/base64
bleep /v3/bleep

Requests can be made using dictionaries:

sample_text = "This is John Smith's sample dictionary request"
text_dict_request = {"text": sample_text}

response = client.process_text(text_dict_request)
response.processed_text

Output:

["This is [NAME_1]'s sample dictionary request"]

or using built-in request objects:

from pai_thin_client import request_objects

sample_text = "This is John Smith's sample process text object request"
text_request_object =  request_objects.process_text_obj(text=[sample_text])

response = client.process_text(text_request_object)
response.processed_text

Output:

["This is [NAME_1]'s sample process text object request"]

Request Objects

Request objects are a simple way of creating request bodies without the tediousness of writing dictionaries. Every post request (as listed in the Private-Ai documentation) has its own request own request object.

from pai_thin_client import request_objects

sample_obj = request_objects.file_url_obj(uri='path/to/file.jpg')
sample_obj.uri

Output:

'path/to/file.jpg'

Additionally there are request objects for each nested dictionary of a request:

from pai_thin_client import request_objects

sample_text = "This is John Smith's sample process text object request where names won't be removed"

# sub-dictionary of entity_detection
sample_entity_type_selector = request_objects.entity_type_selector_obj(type="DISABLE", value=['NAME', 'NAME_GIVEN', 'NAME_FAMILY'])

# sub-dictionary of a process text request
sample_entity_detection = request_objects.entity_detection_obj(entity_types=[sample_entity_type_selector])

# request object created using the sub-dictionaries
sample_request = request_objects.process_text_obj(text=[sample_text], entity_detection=sample_entity_detection)
response = client.process_text(sample_request)
print(response.processed_text)

Output:

["This is John Smith's sample process text object request where names won't be removed"]

Building Request Objects

Request objects can initialized by passing in all the required values needed for the request as arguments or from a dictionary:

# Passing arguments 
sample_data = "JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9UaXRsZSAoc2FtcGxlKQovUHJvZHVj..."
sample_content_type = "application/pdf"

sample_file_obj = request_objects.file_obj(data=sample_data, content_type=sample_content_type)

# Passing a dictionary
sample_dict = {"data": "JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9UaXRsZSAoc2FtcGxlKQovUHJvZHVj...",
               "content_type": "application/pdf"}

sample_file_obj2 = request_objects.file_obj.fromdict(sample_dict)

Request objects also can be formatted as dictionaries:

from pai_thin_client import request_objects

sample_text = "Sample text."
# Create the nested request objects
sample_entity_type_selector = request_objects.entity_type_selector_obj(type="DISABLE", value=['HIPAA'])
sample_entity_detection = request_objects.entity_detection_obj(entity_types=[sample_entity_type_selector])
# Create the request object
sample_request = request_objects.process_text_obj(text=[sample_text], entity_detection=sample_entity_detection)

# All nested objects are also formatted
print(sample_request.to_dict())

Output:

{
 'text': ['Sample text.'], 
 'link_batch': False, 
 'entity_detection': {'accuracy': 'high', 'entity_types': [{'type': 'DISABLE', 'value': ['HIPAA']}], 'filter': [], 'return_entity': True}, 
 'processed_text': {'type': 'MARKER', 'pattern': '[UNIQUE_NUMBERED_ENTITY_TYPE]'}
}

Sample Use

Processing a directory of files

from pai_thin_client import PAIClient
from pai_thin_client.objects import request_objects
import os
import logging

file_dir = "/path/to/file/directory"
client = PAIClient("http", "localhost", "8080")
for file_name in os.listdir(file_dir):
    filepath = os.path.join(file_dir, file_name)
    if not os.path.isfile(filepath):
        continue
    req_obj = request_objects.file_url_obj(uri=filepath)
    # NOTE this method of file processing requires the container to have an the input and output directories mounted
    resp = client.process_files_uri(req_obj)
    if not resp.ok:
        logging.error(f"response for file {file_name} returned with {resp.status_code}")

Processing a Base64 file

from pai_thin_client import PAIClient
from pai_thin_client.objects import request_objects
import base64
import os
import logging

file_dir = "/path/to/your/file"
file_name = 'sample_file.pdf'
filepath = os.path.join(file_dir,file_name)
file_type= "type/of_file" #eg. application/pdf
client = PAIClient("http", "localhost", "8080")

# Read from file
with open(filepath, "rb") as b64_file:
    file_data = base64.b64encode(b64_file.read())
    file_data = file_data.decode("ascii")

# Make the request
file_obj = request_objects.file_obj(data=file_data, content_type=file_type)
request_obj = request_objects.file_base64_obj(file=file_obj)
resp = client.process_files_base64(request_object=request_obj)
if not resp.ok:
    logging.error(f"response for file {file_name} returned with {resp.status_code}")

# Write to file
with open(os.path.join(file_dir,f"redacted-{file_name}"), 'wb') as redacted_file:
    processed_file = resp.processed_file.encode("ascii")
    processed_file = base64.b64decode(processed_file, validate=True)
    redacted_file.write(processed_file)

Bleep an audio file

from pai_thin_client import PAIClient
from pai_thin_client.objects import request_objects
import base64
import os
import logging

file_dir = "/path/to/your/file"
file_name = 'sample_file.pdf'
filepath = os.path.join(file_dir,file_name)
file_type= "type/of_file" #eg. audio/mp3 or audio/wav
client = PAIClient("http", "localhost", "8080")


file_dir = "/home/adam/workstation/file_processing/test_audio"
file_name = "test_audio.mp3"
filepath = os.path.join(file_dir,file_name)
file_type = "audio/mp3"
with open(filepath, "rb") as b64_file:
    file_data = base64.b64encode(b64_file.read())
    file_data = file_data.decode("ascii")

file_obj = request_objects.file_obj(data=file_data, content_type=file_type)
timestamp = request_objects.timestamp_obj(start=1.12, end=2.14)
request_obj = request_objects.bleep_obj(file=file_obj, timestamps=[timestamp])

resp = client.bleep(request_object=request_obj)
if not resp.ok:
    logging.error(f"response for file {file_name} returned with {resp.status_code}")
with open(os.path.join(file_dir,f"redacted-{file_name}"), 'wb') as redacted_file:
    processed_file = resp.bleeped_file.encode("ascii")
    processed_file = base64.b64decode(processed_file, validate=True)
    redacted_file.write(processed_file)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

privateai_client-1.0.4.tar.gz (12.8 kB view hashes)

Uploaded Source

Built Distribution

privateai_client-1.0.4-py3-none-any.whl (11.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page