Skip to main content

Python library for manipulating probabilistic automata.

Project description

Probabilistic Automata

Build Status Docs codecov PyPI version License: MIT

Python library for manipulating Probabilistic Automata. This library builds upon the dfa package.

Table of Contents

Installation

If you just need to use probabilistic_automata, you can just run:

$ pip install probabilistic_automata

For developers, note that this project uses the poetry python package/dependency management tool. Please familarize yourself with it and then run:

$ poetry install

Usage

The probabilistic_automata library centers around the PDFA object which models a finite probabilistic transition system, e.g., a Markov Decision Process, as a DFA or Moore Machine over a product alphabet over the system's actions and the environment's stochastic action.

import probabilistic_automata as PA

def transition(state, composite_action):
    sys_action, env_action = composite_action
    return (state + sys_action + env_action) % 2

def env_dist(state, sys_action):
    """Based on state and the system action, what are the probabilities 
    of the environment's action."""

    return {0: 1/2, 1: 1/2}  # Always a coin flip.

noisy_parity = PA.pdfa(
    start=0,
    label=bool,
    inputs={0, 1},
    env_inputs={0, 1},
    outputs={0, 1},
    transition=transition,
    env_dist=env_dist,   # Equivalently, PA.uniform({0, 1}).
)

The support and transition probabilities can easily calculated:

assert noisy_parity.support(0, 0) == {0, 1}
assert noisy_parity.transition_probs(0, 0) == {0: 1/2, 1: 1/2}
assert noisy_parity.prob(start=0, action=0, end=0) == 1/2

Dict <-> PDFA

Note that pdfa provides helper functions for going from a dictionary based representation of a probabilistic transition system to a PDFA object and back.

import probabilistic_automata as PA

mapping = {
    "s1": (True, {
        'a': {'s1': 0.5, 's2': 0.5},
    }),
    "s2": (False, {
        'a': {'s1': 1},
    }),
}

start = "s1"
pdfa = PA.dict2pdfa(mapping=mapping, start=start)
assert pdfa.inputs == {'a'}

mapping2, start2 = PA.pdfa2dict(pdfa)
assert start == start2
assert mapping2 == mapping

DFA to PDFA

The probabilistic_automata library has two convenience methods for transforming a Deterministic Finite Automaton (dfa.DFA) into a PDFA.

  • The lift function simply creates a PDFA whose transitions are deterministic and match the original dfa.DFA.
import probabilistic_automata as PA
from dfa import DFA

parity = DFA(
    start=0,
    inputs={0, 1},
    label=bool,
    transition=lambda s, c: (s + c) & 1,
)

parity_pdfa = lift(parity)

assert pdfa.inputs == parity.inputs
assert pdfa.env_inputs == {None}
  • The randomize function takes a DFA and returns a PDFA modeling the actions of the DFA being selected uniformly at random.
noisy_parity = PA.randomize(parity)

assert noisy_parity.inputs == {None}
assert noisy_parity.env_inputs == noisy_parity.inputs

Composition

Like their deterministic variants PDFA objects can be combined in two ways:

  1. (Synchronous) Cascading Composition: Feed outputs of one PDFA into another.
machine = noisy_parity >> noisy_parity

assert machine.inputs == noisy_parity.inputs
assert machine.outputs == noisy_parity.outputs
assert machine.start == (0, 0)

assert machine.support((0, 0), 0) == {(0, 0), (0, 1), (1, 0), (1, 1)}
  1. (Synchronous) Parallel Composition: Run two PDFAs in parallel.
machine = noisy_parity | noisy_parity

assert machine.inputs.left == noisy_parity.inputs
assert machine.inputs.right == noisy_parity.inputs

assert machine.outputs.left == noisy_parity.outputs
assert machine.outputs.right == noisy_parity.outputs

assert machine.env_inputs.left == noisy_parity.env_inputs
assert machine.env_inputs.right == noisy_parity.env_inputs

assert machine.start == (0, 0)
assert machine.support((0, 0), (0, 0)) == {(0, 0), (0, 1), (1, 0), (1, 1)}

Note Parallel composition results in a PDFA with dfa.ProductAlphabet input and output alphabets.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

probabilistic_automata-0.3.0.tar.gz (8.8 kB view details)

Uploaded Source

Built Distribution

probabilistic_automata-0.3.0-py3-none-any.whl (9.0 kB view details)

Uploaded Python 3

File details

Details for the file probabilistic_automata-0.3.0.tar.gz.

File metadata

  • Download URL: probabilistic_automata-0.3.0.tar.gz
  • Upload date:
  • Size: 8.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.3 CPython/3.8.1 Linux/5.5.0-1-MANJARO

File hashes

Hashes for probabilistic_automata-0.3.0.tar.gz
Algorithm Hash digest
SHA256 b173568d551709df4ea68d941571e6b46f9ca027aa4f19b3cef1b3210888b1e3
MD5 2e4a059a9b369cc795de416a7deac1d0
BLAKE2b-256 3f277a7b9b5ee70c4edb75b76048f228c66ca15624c22d97ec001670866849ef

See more details on using hashes here.

File details

Details for the file probabilistic_automata-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for probabilistic_automata-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d2fdc8340554ce54a495974ad92e1f6a620df8b5556b319da4569f0d7f5a814d
MD5 dfef3fa3ece7d565308b599cb508b351
BLAKE2b-256 d4135b61abe000cd8804fa7f4cae0ae9eea1e62015c132f64b5e6af412b5e305

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page