Skip to main content

Python library and app to extract images from DCM in private-eye format

Project description

Process DCM

Maintenance GitHub GitHub release (latest by date) GitHub Release Poetry Ruff pre-commit

About The Project

Python library and app to extract images from DCM files with metadata in private-eye format

Installation and Usage

pip install process-dcm
 Usage: process-dcm [OPTIONS] INPUT_DIR

 Process DICOM files in subfolders, extract images and metadata using parallel processing.

╭─ Arguments ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ *    input_dir      TEXT  Input directory containing subfolders with DICOM files. [default: None] [required]                          │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ --image_format        -f      TEXT     Image format for extracted images (png, jpg, webp). Defaults to: png [default: png]            │
│ --output_dir          -o      TEXT     Output directory for extracted images and metadata. Defaults to: __input_dir__/exported_data   │
│                                        Use absolute path if you want to save the output in a specific location.                       │
│                                        [default: exported_data]                                                                       │
│ --n_jobs              -j      INTEGER  Number of parallel jobs. Defaults to: 1 [default: 1]                                           │
│ --overwrite           -w               Overwrite existing images if found.                                                            │
│ --verbose             -v               Verbose output.                                                                                │
│ --version             -V               Prints app version                                                                             │
│ --install-completion                   Install completion for the current shell.                                                      │
│ --show-completion                      Show completion for the current shell, to copy it or customize the installation.               │
│ --help                -h               Show this message and exit.                                                                    │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯

For Developers

To run this project locally, you will need to install the prerequisites and follow the installation section.

Prerequisites

This Project depends on the poetry.

  1. Install poetry, via homebrew or pipx:

    brew install poetry
    

    or

    pipx install poetry
    
  2. Don't forget to use the python environment you set before and, if using VScode, apply it there.

  3. It's optional, but we strongly recommend commitizen, which follows Conventional Commits

Installation

  1. Clone the repo

    git clone https://github.com/Moorfields-Reading-Centre/process-dcm
    cd process-dcm
    

Bumping Version

We use commitizen. The instructions below are only for exceptional cases.

  1. Using poetry-bumpversion. Bump the version number by running poetry version [part] [--dry-run] where [part] is major, minor, or patch, depending on which part of the version number you want to bump.

    Use --dry-run option to check it in advance.

  2. Push the tagged commit created above and the tag itself, i.e.:

    ver_tag=$(poetry version | cut -d ' ' -f2)
    git tag -a v"$ver_tag" -m "Tagged version $ver_tag"
    git push
    git push --tags
    

Changelog

  • 0.0.1
    • First commit

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

process_dcm-0.0.1.tar.gz (11.5 kB view details)

Uploaded Source

Built Distribution

process_dcm-0.0.1-py3-none-any.whl (11.1 kB view details)

Uploaded Python 3

File details

Details for the file process_dcm-0.0.1.tar.gz.

File metadata

  • Download URL: process_dcm-0.0.1.tar.gz
  • Upload date:
  • Size: 11.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Darwin/23.5.0

File hashes

Hashes for process_dcm-0.0.1.tar.gz
Algorithm Hash digest
SHA256 691daa2beda6aabc7f4973fb6a28b2ce2fae49e14f43265a0f5e4479094d5231
MD5 c0fe7d136f315a5f15de8e01058074de
BLAKE2b-256 493484158935f13adbcf895f639667e997b5734524533a9a7412e37df99780cc

See more details on using hashes here.

File details

Details for the file process_dcm-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: process_dcm-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 11.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Darwin/23.5.0

File hashes

Hashes for process_dcm-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d6f06a6781d46e62f415cf577d37201f41df075dc21e288d5159be4d0647f51c
MD5 8a065050af14bbe281758c1562b20947
BLAKE2b-256 2651a2600f27e8f4ec4d5abd298430c94a961a47442966a12ec40c5ea140123c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page