Skip to main content

Python library and app to extract images from DCM in private-eye format

Project description

Process DCM

Maintenance GitHub GitHub release (latest by date) GitHub Release Poetry Ruff pre-commit

About The Project

Python library and app to extract images from DCM files with metadata in private-eye format

Installation and Usage

pip install process-dcm
 Usage: process-dcm [OPTIONS] INPUT_DIR

 Process DICOM files in subfolders, extract images and metadata using parallel processing.

╭─ Arguments ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ *    input_dir      TEXT  Input directory containing subfolders with DICOM files. [default: None] [required]                          │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ --image_format        -f      TEXT     Image format for extracted images (png, jpg, webp). Defaults to: png [default: png]            │
│ --output_dir          -o      TEXT     Output directory for extracted images and metadata. Defaults to: __input_dir__/exported_data   │
│                                        Use absolute path if you want to save the output in a specific location.                       │
│                                        [default: exported_data]                                                                       │
│ --n_jobs              -j      INTEGER  Number of parallel jobs. Defaults to: 1 [default: 1]                                           │
│ --overwrite           -w               Overwrite existing images if found.                                                            │
│ --verbose             -v               Verbose output.                                                                                │
│ --version             -V               Prints app version                                                                             │
│ --install-completion                   Install completion for the current shell.                                                      │
│ --show-completion                      Show completion for the current shell, to copy it or customize the installation.               │
│ --help                -h               Show this message and exit.                                                                    │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯

For Developers

To run this project locally, you will need to install the prerequisites and follow the installation section.

Prerequisites

This Project depends on the poetry.

  1. Install poetry, via homebrew or pipx:

    brew install poetry
    

    or

    pipx install poetry
    
  2. Don't forget to use the python environment you set before and, if using VScode, apply it there.

  3. It's optional, but we strongly recommend commitizen, which follows Conventional Commits

Installation

  1. Clone the repo

    git clone https://github.com/pontikos-lab/process-dcm
    cd process-dcm
    

Bumping Version

We use commitizen. The instructions below are only for exceptional cases.

  1. Using poetry-bumpversion. Bump the version number by running poetry version [part] [--dry-run] where [part] is major, minor, or patch, depending on which part of the version number you want to bump.

    Use --dry-run option to check it in advance.

  2. Push the tagged commit created above and the tag itself, i.e.:

    ver_tag=$(poetry version | cut -d ' ' -f2)
    git tag -a v"$ver_tag" -m "Tagged version $ver_tag"
    git push
    git push --tags
    

Changelog

  • 0.0.1
    • First commit

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

process_dcm-0.1.1.tar.gz (11.4 kB view details)

Uploaded Source

Built Distribution

process_dcm-0.1.1-py3-none-any.whl (11.1 kB view details)

Uploaded Python 3

File details

Details for the file process_dcm-0.1.1.tar.gz.

File metadata

  • Download URL: process_dcm-0.1.1.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1025-azure

File hashes

Hashes for process_dcm-0.1.1.tar.gz
Algorithm Hash digest
SHA256 dfad03c16081de2195b2cc63e7b65c8bcb72fdfc1c3903ddd366e3f69a77a083
MD5 7ea703d0b660348a790fa14ca4498ac5
BLAKE2b-256 febf66c64b908c78369338cd0a29e425683fcc1297ee9466c7adcea8d41c5993

See more details on using hashes here.

File details

Details for the file process_dcm-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: process_dcm-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 11.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1025-azure

File hashes

Hashes for process_dcm-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 51b2a92c71bc24f60689a59bce8364d1d4e0b41ac584f0a6ed3b6b901a62f6c3
MD5 95668892039ddf84cfab7a8aa2076d1e
BLAKE2b-256 e2a2da69de54664b1d5e84b0870efcdc7d7020a4483590045f4de14cd65ac535

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page