Skip to main content

Python library and app to extract images from DCM in private-eye format

Project description

Process DCM

Maintenance GitHub GitHub release (latest by date) GitHub Release PyPI Poetry Ruff pre-commit

About The Project

Python library and app to extract images from DCM files with metadata in private-eye format

Installation and Usage

pip install process-dcm
Usage: process-dcm [OPTIONS] INPUT_DIR

 Process DICOM files in subfolders, extract images and metadata using parallel processing.

╭─ Arguments ─────────────────────────────────────────────────────────────────────────────────────────╮
│ *    input_dir      TEXT  Input directory containing subfolders with DICOM files. [default: None]   │
│                           [required]                                                                │
╰─────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ───────────────────────────────────────────────────────────────────────────────────────────╮
│ --image_format        -f      TEXT     Image format for extracted images (png, jpg, webp). Defaults │
│                                        to: png                                                      │
│                                        [default: png]                                               │
│ --output_dir          -o      TEXT     Output directory for extracted images and metadata. Defaults │
│                                        to: exported_data                                            │
│                                        [default: exported_data]                                     │
│ --relative            -r               Save extracted data in folders relative to _input_dir_.      │
│ --n_jobs              -j      INTEGER  Number of parallel jobs. Defaults to: 1 [default: 1]         │
│ --mapping             -m      TEXT     Path to CSV containing patient_id to study_id mapping. If    │
│                                        not provided and patient_id is not anonymised, a             │
│                                        'patient_2_study_id.csv' file will be generated              │
│ --keep                -k      TEXT     Keep the specified fields (p: patient_key, n: names, d:      │
│                                        date_of_birth, D: year-only DOB, g: gender)                  │
│ --overwrite           -w               Overwrite existing images if found.                          │
│ --verbose             -v               Verbose output.                                              │
│ --version             -V               Prints app version                                           │
│ --install-completion                   Install completion for the current shell.                    │
│ --show-completion                      Show completion for the current shell, to copy it or         │
│                                        customize the installation.                                  │
│ --help                -h               Show this message and exit.                                  │
╰─────────────────────────────────────────────────────────────────────────────────────────────────────╯

For Developers

To run this project locally, you will need to install the prerequisites and follow the installation section.

Prerequisites

This Project depends on the poetry.

  1. Install poetry, via homebrew or pipx:

    brew install poetry
    

    or

    pipx install poetry
    
  2. Don't forget to use the python environment you set before and, if using VScode, apply it there.

  3. It's optional, but we strongly recommend commitizen, which follows Conventional Commits

Installation

  1. Clone the repo

    git clone https://github.com/pontikos-lab/process-dcm
    cd process-dcm
    

Bumping Version

We use commitizen. The instructions below are only for exceptional cases.

  1. Using poetry-bumpversion. Bump the version number by running poetry version [part] [--dry-run] where [part] is major, minor, or patch, depending on which part of the version number you want to bump.

    Use --dry-run option to check it in advance.

  2. Push the tagged commit created above and the tag itself, i.e.:

    ver_tag=$(poetry version | cut -d ' ' -f2)
    git tag -a v"$ver_tag" -m "Tagged version $ver_tag"
    git push
    git push --tags
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

process_dcm-0.2.1.tar.gz (14.5 kB view details)

Uploaded Source

Built Distribution

process_dcm-0.2.1-py3-none-any.whl (14.2 kB view details)

Uploaded Python 3

File details

Details for the file process_dcm-0.2.1.tar.gz.

File metadata

  • Download URL: process_dcm-0.2.1.tar.gz
  • Upload date:
  • Size: 14.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1025-azure

File hashes

Hashes for process_dcm-0.2.1.tar.gz
Algorithm Hash digest
SHA256 30eb8bce3d2d5411395eb138054ca6cf0d40a1836138914e2cc8db49d5f91909
MD5 1d2a1fce2bc5348b11acd89d2149c06d
BLAKE2b-256 0aff514643998ebdc9de98eacc222e5852c2fe417896d42716892b05584807a6

See more details on using hashes here.

File details

Details for the file process_dcm-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: process_dcm-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 14.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1025-azure

File hashes

Hashes for process_dcm-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 57cd738a89318a24a44f555bf56c3613e59d5160f129879ddc00eb6dc5c16d45
MD5 18cddd212179de59a52c50628cdc038b
BLAKE2b-256 ee8e8133a950b11cc2c5a19e747567b9caf249f8050e2197e15654f82903e243

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page